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The silicon isotope composition of biogenic silica (δ30SiBSi) in the ocean is a function of the δ30Si of the available
dissolved Si (DSi; H2SiO4), the degree of utilisation of the available DSi, and, for some organisms, the concentra-
tion of DSi. Thismakes δ30SiBSi in sediment archives a promising proxy for past DSi concentrations and utilisation.
At steady-state,mean δ30SiBSimust equal aweighted average of the inputs, themajority ofwhich are of continen-
tal origin. Variation in the functioning of the continental Si cycle on timescales similar to the residence time of DSi
in the ocean (~10 ka) may therefore contribute to downcore variability in δ30SiBSi on millennial or longer time-
scales. The direction andmagnitude of change in published δ30SiBSi records over the last few glacial cycles is con-
sistent among ocean basins and between groups of silicifiers. They document glacial values that are typically 0.5
to 1.0‰ lower than interglacial values and together hint at coherent and predictable glacial–interglacial variabil-
ity in whole-ocean δ30Si driven by a change inmean δ30Si of the inputs. In this contribution, we review the mod-
ern inputs of DSi to the ocean and the controls on their isotopic composition, and assess the evidence for their
variability on millennial-plus timescales.
Today, 9.55 × 1012mol yr−1 DSi enters the ocean, of which roughly 64% and 25% are direct riverine inputs of DSi,
and DSi fromdissolution of aeolian and riverborne sediment, respectively. The remainder derives from alteration
orweathering of the ocean crust. Each input has a characteristic δ30Si, with our current best estimate for aweight-
ed mean being 0.74‰, although much work remains to be done to characterise the individual fluxes. Many as-
pects of the continental Si cycle may have differed during glacial periods that together can cumulatively
substantially lower the mean δ30Si of DSi entering the ocean. These changes relate to i) a cooler, drier glacial cli-
mate, ii) lowered sea level and the exposure of continental shelves, iii) the presence of large continental ice-
sheets, and iv) altered vegetation zonation.
Using a simple box-model with a Monte-Carlo approach to parameterisation, we find that a transition from a
hypothesised glacial continental Si cycle to themodern Si cycle can drive an increase inwhole ocean δ30Si of com-
parable rate andmagnitude to that recorded in δ30SiBSi. This implies that wemay need to revisit our understand-
ing of aspects of the Si cycle in the glacial ocean. Although we focus on the transition from the last glacial, our
synthesis suggests that the continental Si cycle should be seen as a potential contributory factor to any variability
observed in ocean δ30SiBSi on millennial or longer timescales.

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

At or near the Earth's surface silicate minerals can be chemically
weathered, a process that forms soils, releases solutes and ultimately
sustains life. The solutes that are released, including dissolved Si
(Si(OH)4; hereafter DSi), enter biogeochemical cycles – the movement
of elements through the environment – that end with burial in marine
sediments. The global Si cycle is characterised by one relatively discrete
sub-cycle on the continents and another in the oceans (Fig. 1). The
transfer of Si between the two is essentially unidirectional, so the
land-to-ocean Si flux is of interest both as an integrative function of
the continental Si cycle and as the chief input for the ocean Si cycle.
The purpose of this contribution is (i) to review the fluxes of Si from
land to ocean and the mechanisms that determine their magnitude
and silicon isotopic composition (δ30Si), (ii) to estimate plausible limits
on themagnitude bywhich thesefluxes can vary onmillennial or longer
timescales, and (iii) to assess the extent towhich this variability is prop-
agated to the ocean Si cycle and is visible in palaeoenvironmental
archives.

Besides silicon's inherent interest as a major and ubiquitous ele-
ment, two reasons for studying the Si cycle are commonly put forward.
First, the process of chemical weathering of silicate minerals is a key
step in the sequestration of atmospheric CO2 as marine carbonates
and hence is a key term in the long-term (‘geological’) carbon cycle
(Walker et al., 1981). The rate of silicate weathering should be related
to the concentration of atmospheric CO2, via climatological and biolog-
ical feedbacks in order to provide the negative feedback necessary to
balance the continuous carbon degassing from the solid earth (Berner
and Caldeira, 1997). Therefore, understanding the global Si cycle can
provide insight to the functioning of Earth's thermostat. Second, DSi is
a nutrient for many organisms. For some – notably the diatoms (class:
Bacillariophyceae) – it is an essential nutrient. For others, including
many vascular plants, DSi provides ecological, physiological or structur-
al benefits (Epstein, 1999; Guntzer et al., 2012; Pilon-Smits et al., 2009).
The availability of DSi in aquatic ecosystems controls the amount of sili-
ceous primary productivity (mostly diatoms, which today account for
40% of ocean primary productivity) (Egge and Asknes, 1992). This sili-
ceous production is also a key component of the ocean biological
pump, which determines the partitioning of carbon between the deep
ocean and the atmosphere on centennial to millennial timescales (De
La Rocha, 2006).

This contribution builds on earlier reviews that have explored either
the ocean Si budget, but without consideration of a Si isotope perspec-
tive (Tréguer et al., 1995; Tréguer and De La Rocha, 2013), or the conti-
nental Si isotope cycle (Opfergelt and Delmelle, 2012). It is partly
motivated by the proliferation of marine biogenic silica δ30Si records
that are conventionally interpreted in terms of palaeonutrient
utilisation or water-mass mixing (see Section 2.3). Here, we use our
synthesis to advance the hypothesis that these δ30Si records may also
reflect changes in the continental Si cycle. This review is structured
as follows: first, we provide basic background information on the conti-
nental Si cycle (Section 2.1), silicon isotope geochemistry (Section 2.2),
and the use and conventional interpretation of downcore fluctuations in
δ30Si in marine sediments as a palaeoenvironmental proxy on
millennial-plus timescales (Section 2.3). Section 3 summarises the con-
trols on the silicon isotope composition of continental waters. We then
report the current state-of-the-art of DSi inputs to the global ocean on a
flux-by-flux basis (Section 4), paying close attention to the δ30Si of these



Fig. 1. Cartoon schematic of themodern day global Si cycle. The values show themagnitudes of thefluxes (in 1012mol yr−1) and their associated δ30Si values (in‰). Typical fractionations
(ε, ‰) associated with production of biogenic silica (BSi) and clay minerals are shown in the inset panels. Dotted lines indicate particulate fluxes; solid lines indicate solute fluxes or
transformations. See main text for details.
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fluxes. In Section 5, we consider how these fluxes may vary on
millennial-plus timescales. Finally, in Section 6, we use a simple box-
modelling approach to exploit our synthesis and assess what these var-
iations couldmean for the ocean Si cycle, and how this may be recorded
in palaeoenvironmental archives.

2. Background

2.1. The continental Si cycle

The key processes in the continental Si cycle are schematised in
Fig. 1, and have been reviewed in detail elsewhere (Cornelis et al.,
2011). The cycle begins with the release of dissolved silica (DSi) during
weathering processes. A fractionmay then be transferred directly to the
fluvial system, via groundwater or soil water flow. A fractionmay be in-
corporated into, or adsorbed onto, secondary phases of variable stabili-
ty. Finally, a fraction may be utilised by vascular plants that take up DSi
and subsequently precipitate it as biogenic silica (BSi) structures termed
phytoliths (Carey and Fulweiler, 2012; Massey et al., 2006; Piperno,
2001). Upon litterfall the BSi returns to the soil where it may dissolve,
be stored, or be structurally or chemically altered (Barão et al., 2014;
Sommer et al., 2006). Ultimately, Si will be lost to the fluvial system as
both DSi and eroded particulate Si. BSi, altered BSi and pedogenic
silicates can have similar solubilities and reactivities, so the term ‘amor-
phous silica’ (ASi) is commonly used instead (Saccone et al., 2007). The
net result of continental Si cycling is that in many ecosystems, a soil–
plant ASi pool develops that is orders of magnitude larger than the an-
nual release of DSi from primary minerals via weathering (Blecker
et al., 2006; Clymans et al., 2011; Struyf et al., 2010a). Because of this,
it is conceptualised that terrestrial soil–plant systems buffer the release
of Si from the continents, at least in some settings (Struyf and Conley,
2012), and that perhaps even a majority of river DSi passes through
this buffer before export into the river system (Derry et al., 2005;
Struyf et al., 2009). Once in the river system, both biotic and abiotic pro-
cesses can further modify the Si flux. Lakes and reservoirs provide low-
turbidity environments particularly conducive to BSi production by dia-
toms (Frings et al., 2014a; Lauerwald et al., 2013). In-stream processes
and the functioning of floodplains and hyporheic and riparian zones
may also be important (Bouwman et al., 2013). Estuaries and deltas
constitute a final zone with the capacity to modify river Si fluxes
(Milliman and Boyle, 1975; Conley and Malone, 1992; Weiss et al.,
2015).

2.2. Low temperature silicon isotope geochemistry

There are three naturally occurring stable isotopes of Si: 28Si, 29Si and
30Si, with atomic masses of 27.97693, 28.97649 and 29.97377 and rela-
tive abundances of ca. 92.2%, 4.7% and 3.1%, respectively (Ding et al.,
2005a). They fractionate during almost all of the low-temperature pro-
cesses that define the continental and oceanic Si cycles, making them a
useful geochemical tracer.

Variations in silicon stable isotope abundances are presented in delta
notation as δ29Si or δ30Si, i.e. the deviation in parts per thousand of a
given isotope ratio (29Si/28Si or 30Si/28Si, respectively) from the same
ratio in a standard reference material. For Si, this reference material is
quartz grains known as NBS28 (RM 8546), and is distributed by the
National Institute of Standards (NIST). The isotopic composition (δ30Si,
in per mil) of a sample is then:

δxSi ¼ Rsample
�
Rstandard

−1
h i

� 1000 ð1Þ

where R is the ratio of xSi/28Si in the sample and standard, and x is 29 or
30. Differences in Si isotopic composition between two phases can be

Image of Fig. 1
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caused by isotope fractionation, a process that stems fromdifferences in
the masses of the isotopes. Fractionation can result from either kinetic
or equilibrium isotope effects and the fractionation of initial (substrate)
phase A relative to product phase B is termed the fractionation factor, α:

xαA−B ¼ RA
�
RB
: ð2Þ

For Si, αA−B is typically very close to one, and so is also presented in
permil as ε:

xεA−B ¼ 103 xαA−B−1ð Þ: ð3Þ

Both kinetic and equilibrium isotope effects stem frommass depen-
dent fractionation, and therefore a plot of δ30Si against δ29Si defines a
predictable relationship that is a function of the mass-dependence of
the fractionation factors (Young et al., 2002): 29αA−B=(30αA−B)β

where β for atomic Si is 0.5092 for kinetic fractionation and 0.5178 for
equilibrium fractionation. Generally, kinetic isotope fractionation occurs
when the chemical reaction ormass-transfer is unidirectional, and pref-
erentially enriches the product in lighter isotopes. Equilibrium isotope
fractionation occurs when chemical reactions are at equilibrium, and
tends to partition the heavier isotopes into the phasewith a lower ener-
gy state. Given the relatively small range of Si isotope fractionations ob-
served at the Earth's surface, the two are essentially indistinguishable at
currentmeasurement precision. Deviations frommass-dependency im-
plies mass-independent isotope fractionation, unknown for silicon iso-
topes during Earth surface processes, so adherence to mass-dependent
fractionation is insteadmore commonly used as an indicator of the suc-
cessful removal of interferences during measurement.

Somegeneralisations can bemade about thenature of silicon isotope
fractionations in the low-temperature environments that characterise
the Earth's surface. The tendency is for fractionation associated with
the formation of a solid from a solution to favour the incorporation of
the lighter isotopes into the new solid, leaving the residual solution
enriched in the heavier isotopes (i.e. kinetic, not equilibrium isotope
fractionations appear to predominate) (De La Rocha et al., 1997, 2000;
Opfergelt and Delmelle, 2012; Ziegler et al., 2005a,b). In other words,
εA−Bb0 or αA−Bb1, and is observed in the formation of BSi by diatoms,
sponges, radiolarians and plants, and in the formation of secondary
minerals (Fig. 2).

Two simple models are commonly used to predict and interpret the
evolution of silicon isotope compositions as a function of fSi, the fraction
Fig. 2. Summary of published estimates of fractionations associated with the biological or ge
between a solid phase (product) and a dissolved phase (reactant); the bars represent the ran
diatoms: De La Rocha et al. (1997), Sutton et al. (2013), Varela et al. (2004), Cardinal et al. (
(2004), De La Rocha et al. (2011), and Egan et al. (2012). Freshwater (and estuarine) diatoms:
(2016). Marine siliceous sponges: Hendry and Robinson (2012), Hendry et al. (2010), Wille et
(2006), and Ziegler et al. (2005b). Secondary minerals: Ziegler et al. (2005b), Georg et al. (2
oxides: Delstanche et al. (2009). (A)Si precipitation: Geilert et al. (2014, 2015), Oelze et al. (2
(1995). Dissolution: Ziegler et al. (2005a), Frings et al. (2014c), Demarest et al. (2009), Wetzel
of the available Si in reactant A converted or transferred to product B,
with an associated permil enrichment εA−B. The first model describes
the evolution of δ30Si in the reactant and product when a finite-pool
of reactant is isolated from fresh sources of Si, and the products do not
interact further. In this case, both the residual pool of reactant Si and
the pool of produced Si defineRayleigh distillation curves,where the ac-
cumulated product, δ30SiB, is given by:

δ30SiB ¼ δ30SiA;0− f Si
.

1− f Si

� �
� ε30A−B � ln f Sið Þ ð4Þ

and the residual reactant, δ30SiA, is given by:

δ30SiA ¼ ε30A−B � ln f Sið Þ ð5Þ

where δ30SiA ,0 is the isotopic composition of the source Si at time 0
(Mariotti et al., 1981). An alternative model describes the evolution of
δ30Si when the production of pool B is at a steady-state with a constant
supply of fresh reactant into the system:

δ30SiB ¼ δ30SiA;0 þ ε30A−B � f Si ð6Þ

with the residual reactant Si simply being:

δ30SiA ¼ ε30A−B 1− f Sið Þ: ð7Þ

Eqs. (6) and (7) also apply to a system with a finite pool of Si, in
which the reactant and products interact and partition according to fSi.
Both models are shown graphically in Fig. 3. The terms ‘open’ and
‘closed’models havebeen applied to bothmodels, depending onwheth-
er the perspective of the reactant or product is taken, and whether the
reaction is considered unidirectional or not. For clarity, we refer to the
first model (Eqs. (4) and (5)) as a Rayleigh model and the second
(Eqs. (6) and (7)) as a steady-state model.

At least 1500 δ30Si determinations, summarised in Fig. 4, have been
made on continental material alone, and a similar number on oceanic
and extra-terrestrial material. The range of fractionations during low-
temperature processes is sufficient to imprintmeasurable, interpretable
and in some cases distinctive δ30Si values on to natural Si bearing phases
(Fig. 4). Essentially, this means the stable isotopes of silicon can provide
information on Si sources and processes above and beyond that avail-
able from simple mass-balance considerations. In this manuscript all
ochemical cycling of Si at the Earth's surface. All fractionations refer to a transformation
ge observed in each work. Estimates were obtained from the following sources: Marine
2005), Reynolds et al. (2006), Beucher et al. (2008), Fripiat et al. (2011), Milligan et al.
Alleman et al. (2005), Opfergelt et al. (2011), Sun et al. (2013, 2014), and Panizzo et al.
al. (2010), and Douthitt (1982). Vascular plants: Ding et al. (2005b, 2008), Opfergelt et al.
007a, 2009b), Opfergelt et al. (2010, 2011, 2012), and Basile-Doelsch et al. (2005). Iron
014, 2015), Roerdink et al. (2015), Ding et al. (2008), Ziegler et al. (2005a), and Li et al.
et al. (2014), and Sun et al. (2014).

Image of Fig. 2


Fig. 3. Schematic showing the evolution of δ30Si in two fractionation models as Si is
converted from one phase to another with an associated fractionation ε. Red lines
display the case when there is a steady supply of fresh reactant into the system (with
constant δ30Si), i.e. the steady-state model. Black lines display the case when there is a
finite pool of reactant being converted into a product that has no further interaction, i.e.
the Rayleigh model. Solid lines indicate the isotopic evolution of the reactant, dashed
lines the evolution of the instantaneous product, which is always reactant + ε. The
dotted line represents the accumulated (integrated) product of a Rayleigh fractionation
model. At fSi = 1, all reactant is converted to product, so the product has the
composition of the initial solution.
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silicon isotope ratios are presented as δ30Si relative to NBS28, and
corrected where necessary from published δ29Si values assuming a
mass-dependency factor of 0.51 (see above). The first measurements
were reported relative to the Caltech Rose Quartz Standard (RQS) (e.g.
Douthitt, 1982), which should produce roughly comparable results
since NBS28 and RQS apparently have near-identical Si isotope ratios
(Georg et al., 2007b). Early measurements used gas-source mass spec-
trometers after fluorination of Si to the gaseous SiF4 (e.g. Reynolds and
Verhoogen, 1953), but the use of multi-collector inductively-coupled-
plasma mass-spectrometry (MC-ICP-MS) is becoming increasingly
dominant and can achieve b0.1‰ 2σ external reproducibility (e.g.
Zambardi and Poitrasson, 2011). The use of a laser-ablation unit at-
tached to a MC-ICP-MS (e.g. Steinhoefel et al., 2011) or of secondary
ionmass-spectrometry (e.g. Basile-Doelsch et al., 2005) are also becom-
ing more prevalent and offer the advantages of in-situ analysis, though
they have not reached the precision of solution MC-ICP-MS.

2.3. Silicon isotopes in marine biogenic silica as a palaeoenvironmental
proxy

The δ30Si of biosiliceous remains in marine sediments is being in-
creasingly used as a palaeoceanographic tool (De La Rocha et al., 1998;
Hendry et al., 2014). There has been a particular focus on the transition
from the last glacial maximum (LGM, ca. 21 ka) to the present day and
to date, δ30Si records have been developed fromdiatoms, sponges or ra-
diolarians from at least 21 cores over the deglacial period (Fig. 5). These
records are globally distributed, although more prevalent in the South-
ern Oceanwhich plays a large role in themodern daymarine silica cycle
andwhere sediments ofmore than 85wt.% biogenic silicamay be found.
They are not straightforward to interpret. The modern day silicon iso-
tope distribution reflects an interplay between biogenic silica produc-
tion and dissolution, and the physical mixing of the ocean (de Souza
et al., 2012, 2014; Reynolds, 2009; Wischmeyer et al., 2003). Together,
these combine to producewatermasseswith relatively distinct DSi con-
centrations and δ30Si. Deconvolving the effects of one from the other,
even when assuming preservational or species-specific biases (vital ef-
fects) are negligible (Sutton et al., 2013), becomes tricky.

A conventional interpretation considers changes in δ30Si of surface-
dwelling organisms (diatoms and radiolarians) as reflecting DSi
utilisation (De La Rocha et al., 1998; Maier et al., 2013). By considering
the pool of DSi from which diatoms and radiolarians precipitate their
skeletons as either a finite pool which is not immediately replenished
(i.e. bloom conditions) or a continuously replenished pool (i.e. non-
bloom conditions), it is possible to relate the δ30Si of the product (i.e.
the BSi) to fSi, the fraction of DSi utilised (Section 2; Fig. 3), assuming
εDSi–BSi and initial δ30Si are known. The interpretation is different for si-
liceous sponges, benthic animals partly comprising the phylumPorifera,
that produce skeletons of biogenic silica. The fractionation of silicon iso-
topes (approximated as the difference betweenDSi and sponge δ30Si, i.e.
Δδ30Si) by sponges varies as a function of [DSi]−1, increasing to an ob-
served maximum magnitude of 30εDSi–BSi ≈ −5‰ at high (N100 μM)
concentrations (Hendry and Robinson, 2012;Wille et al., 2010). Chang-
ing δ30Si of sponge-spicule BSi therefore reflects changes in either ambi-
ent DSi concentrations or the isotopic composition of the DSi, or both.

Given that the Si isotope fractionation associated with diatom BSi
production is around −1.1‰ (De La Rocha et al., 1997; Sun et al.,
2014; Sutton et al., 2013), then large changes in fSi are required to ex-
plain the downcore shifts greater than a few tenths of a permil in diatom
δ30Si records, assuming initial δ30Si remains constant, independent of
the model chosen. For example, if the entirety of the change in diatom
δ30Si observed in core MD88-769 (from +1.02‰ to +1.99‰)
(Beucher et al., 2007) is attributable to variable palaeoutilisation of
DSi, this implies a shift from near-zero DSi usage to near-complete
utilisation, assuming a constant diatom fractionation of −1.1‰ (see
Fig. 5). These extreme changes strongly suggest other processes must
be involved. There is therefore a growing awareness that downcore di-
atom δ30Si records can also partly reflect e.g. species specific effects
(Sutton et al., 2013), water mass mixing or circulation (e.g. Beucher
et al., 2007) or a whole-ocean change in δ30Si of DSi (the hypothesis ad-
vanced here).

The published marine BSi δ30Si records, summarised in Fig. 5,
show a general increase in δ30Si from the LGM to the present day
superimposed on higher frequency variability. These typically exhibit
total variability of 0.5–1.0‰. This pattern of lower glacial δ30Si to higher
interglacial δ30Si is well recognised and has been documented in
the Southern Ocean (De La Rocha et al., 1998; Horn et al., 2011), the
eastern equatorial Pacific (Pichevin et al., 2009) and the north Atlantic
(Hendry et al., 2014), and has also been shown to be a feature of previ-
ous glacial–interglacial cycles (Brzezinski et al., 2002; Ellwood et al.,
2010; Griffiths et al., 2013). It also appears to be consistent between
benthic and planktic organisms. Given this consistency among ocean-
basins, different silicifying organisms, and repeatability across dif-
ferent glacial cycles, coupled with the large changes in DSi utilisation
implied (see above), this raises the question to what extent these
changes reflect a whole-ocean shift rather than local shifts in palaeo-
productivity or nutrient utilisation.

3. What controls δ30Si of DSi in continental waters?

Many hundreds of individual DSi–δ30Si determinations from rivers,
soil waters, lakes and groundwaters are now available (Fig. 4). This al-
lows a number of results to be generalised:

- River water DSi–δ30Si is higher than theminerals fromwhich it ulti-
mately derives.

- There is no global relationship between δ30Si and DSi concentrations
(Fig. 6a) (or DSi fluxes where available; Fig. 6b): both positive and
negative correlations have been reported from individual systems.

- There is no relationship between δ30Si and latitude (Fig. 6c).

Image of Fig. 3
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- Individual sampling stations tend to show seasonal variability of ca.
0.5‰ to 1.0‰ with lower values corresponding to high-discharge
periods (Fig. 6d).

- River δ30Si tends to increase downstream (Fig. 7).

As a first step,we can probably discount variability inherited directly
from the various groups of minerals that collectively constitute ‘bed-
rock.’ Although these do exhibit some variability, in particular in shales
and other sedimentary rocks (Douthitt, 1982; Savage et al., 2013), they
tend to define a limited range of silicon isotope compositions around an
upper crustal average of ca. −0.25‰ (Fig. 4). Compared to this, the
range of values observed in river waters (almost 5‰) is too large
to have been imparted from source material variability. We can
probably also discount silicon isotope fractionation during the initial
solubilisation of Si from the parent material. While a series of dissolu-
tion experiments with Hawaiian basalts has demonstrated the prefer-
ential initial release of 28Si (Ziegler et al., 2005a), mass-balance
dictates that this cannot be maintained indefinitely, and at steady-
state progression of weathering into a grain, the 30Si/28Si ratio of Si re-
leased must equal that of the grain (Geilert et al., 2015). The complete
absence of river DSi of lower δ30Si than bedrock also argues against
this. We therefore consider that the range of δ30Si in continental
waters predominantly reflects fractionating processes occurring after
solubilisation from the parent material.

Relatively large Si isotope fractionations are associated with second-
arymineral formation, Si adsorption to Fe or Al oxides and biological up-
take (summarised in Fig. 2). Note that because both abiotic and biotic
processes are associatedwith similar fractionations, the two are isotopi-
cally comparable. For processes in the opposite direction – the dissolu-
tion of clay minerals or biogenic silica – the evidence for fractionation
is more equivocal (Wetzel et al., 2014) for the reasons discussed
Fig. 4. A compilation of silicon isotope determinations on natural materials. The grey
shaded area shows the range of values found in the literature, while the bars show the
distribution of these values. Data sources: Soil and pore waters: Cornelis et al. (2010),
Frings et al. (2014c), Pogge von Strandmann et al. (2012), Pokrovsky et al. (2013),
White et al. (2012), Ziegler et al. (2005a,b), and Vandevenne et al. (2015). Groundwater:
Douthitt (1982), Georg et al. (2009a,b), Opfergelt et al. (2011, 2013), Pokrovsky et al.
(2013), Ziegler et al. (2005a,b), and Pogge von Strandmann et al. (2014). River water:
Alleman et al. (2005), Cardinal et al. (2010), Cockerton et al. (2013), De la Rocha et al.
(2000), Delvaux et al. (2013), Ding et al. (2004, 2011), Engström (2009), Engström et al.
(2010), Fontorbe et al. (2013), Frings et al. (2014c, 2015), Frings (unpublished data),
Georg et al. (2006, 2007a, 2009a), Hughes et al. (2011, 2012, 2013), Opfergelt et al.
(2009, 2013), Pokrovsky et al. (2013), Ziegler et al. (2005a,b), and Vandevenne et al.
(2015) Lake water: Alleman et al. (2005), Opfergelt et al. (2011), and Panizzo et al.
(2016). Seawater: De La Rocha (unpublished compilation). Hydrothermal fluids (including
hot springs): De La Rocha et al. (2000), Opfergelt et al. (2011, 2013), Douthitt (1982),
Geilert et al. (2015), and Ding et al. (1996). Primary minerals (non-exhaustive, includes
metamorphic, igneous and sedimentary): Abraham et al. (2008), Armytage et al. (2011),
Basile-Doelsch et al. (2005), Chakrabarti and Jacobsen (2010), Cornelis et al. (2010),
Douthitt (1982), Fitoussi and Bourdon (2012), Fitoussi et al. (2009), Frings et al.
(2014c), Georg et al. (2007b, 2009b), Opfergelt et al. (2010, 2012), Pokrovsky et al.
(2013), Savage et al. (2011, 2013), Steinhoefel et al. (2011), Zambardi et al. (2013), and
Ziegler et al. (2005a,b). Bulk soil: Bern et al. (2010), Cornelis et al. (2010), Ding et al.
(2005b), Opfergelt et al. (2010, 2012), Pogge von Strandmann et al. (2012), Pokrovsky
et al. (2013), Steinhoefel et al. (2011), and Ziegler et al. (2005a). Secondary minerals:
Cornelis et al. (2010, 2014), Ding et al. (1996), Douthitt (1982), Frings et al. (2014c),
Georg et al. (2009b), Opfergelt et al. (2010, 2012), Steinhoefel et al. (2011), and Ziegler
et al. (2005b). Siliceous precipitates (silcretes, sinters and other precipitates): Basile-
Doelsch et al. (2005), Douthitt (1982), Geilert et al. (2015), and Ding et al. (1996).
Diatom BSi (marine and freshwater): Alleman et al. (2005), Cardinal et al. (2007), De la
Rocha et al. (2000), Fripiat et al. (2011), Opfergelt et al. (2011), Panizzo et al. (2016),
Varela et al. (2004), and Sun et al. (2013). Sponge BSi (mostly marine): De La Rocha
(2003), Douthitt (1982), Hendry and Robinson (2012), Hughes et al. (2013), and Wille
et al. (2010). Vascular plants/Phyotliths: Cornelis et al. (2010), Ding et al. (2005b),
Douthitt (1982), Engström et al. (2008), Frings et al. (2014c), Hodson et al. (2008),
Köster et al. (2009), Opfergelt et al. (2010), Pokrovsky et al. (2013), Steinhoefel et al.
(2011), White et al. (2012), and Ziegler et al. (2005b). Sedimentary BSi: Cockerton et al.
(2015), Douthitt (1982), Frings et al. (2014c), Panizzo et al. (2016), Street-Perrott et al.
(2008), Swann et al. (2010), and Sun et al. (2011), plus marine sediments as detailed in
Fig. 8.
above, and has been considered negligible in modelling of isotope be-
haviour in the weathering zone (Bouchez et al., 2013). Therefore to a
first order δ30Si of DSi in continental waters should be a function of
i) the degree of net incorporation of solubilised Si into secondary

Image of Fig. 4
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Fig. 6. Variation in δ30Si of river DSi as a function of A: river DSi concentration (μM); B: instantaneous DSi yield (kmol km−2 yr−1; the upper axis shows a conversion to t km−2 yr−1 for
convenience); C: latitude (°N or S) and D: Instantaneous discharge (Qinst) normalised to the maximum observed in a given river (Qmax).
Data sources as in Fig. 4.
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minerals or biogenic silica and ii) the fractionation associated with this
(Bouchez et al., 2013). This simple observation explains why all river
waters and most soil- and ground-waters are 30Si enriched relative to
the DSi released from bedrock: the removal of DSi from solution to
these neoformed solid phases preferentially incorporates the lighter
28Si, with permil enrichments (30εremoval) that cluster around −1 to
−2‰, though greater fractionations have been reported (Fig. 2).

3.1. Identifying incorporation of Si into secondary phases

Assuming that silicate minerals release Si and other elements stoi-
chiometrically, and if one or more of these elements behaves conserva-
tively in solution, then fSi, the fraction of initially solubilised Si that
remains in solution, can be estimated:

f Si ¼ DSi=Xsolution

.
Si=Xparent
Fig. 5. Variation in δ30Si of biogenic silica in marine sediments over the last 30 ka. Data sour
diamonds = radiolarians; brown triangles = bulk biogenic silica. For measurements made o
with constant initial δ30Si of DSi, assuming a diatom fractionation of−1.1‰ and a steady-state
dots) referred to in this manuscript, previously studied for variation in δ30Si of biogenic opal
from Gouretski and Koltermann (2004). Data sources: Core E50-11: De La Rocha et al. (1998)
KC081: Hendry et al. (2010); Core KNR140-2-56GGC: Hendry et al. (2010); Core MD01-2416:
et al. (2014); Core MD88-769: Beucher et al. (2007); Core MD97-2101: Beucher et al. (2007
ODP1089: Ellwood et al. (2010); Core PC034: Hendry et al. (2010); Cores PS1778-5 and PS17
Brzezinski et al. (2002); Core RC13-269: De La Rocha et al. (1998); Core SO147-106KL: Ehle
(2011); and Core E33-22: Ellwood et al. (2010) and Sutton (2011).
where Xsolution and Xparent are the concentrations of the normalising
element(s) in the dissolved phase and the parentmaterial, respectively.
Hughes et al. (2013) used dissolved (Na + K) in the Amazon basin and
Georg et al. (2007a) used dissolved Ca in Icelandic rivers. This index re-
flects weathering congruency — an fSi of 1 implies that all Si initially
mobilised remains in solution (i.e. solute element and isotope ratios
identical to that of the parent material), whereas fSi of 0 implies all Si
has been removed from solution and incorporated into secondary
solids, including biogenic silica. We follow Hughes et al. (2013) and
use (Na + K) as normalising elements, with a parent upper crustal Si/
(Na + K) molar ratio of 6.7 from Rudnick and Gao (2003), although a
value of ~3.5 may be more appropriate, as it discounts the non-
reactive quartz component (Hughes et al., 2013). Note that there are
several caveats involved in the use of (Na + K) for normalisation, in-
cluding the assumptions that there are no additional sources other
than the silicate bedrock, and that they behave conservatively in solu-
tion, which are both commonly invalidated. Additionally, seasonal
ces as in Fig. 7. Grey circles = diatoms; blue squares = siliceous sponge spicules; black
n diatom BSi, the required change in utilisation efficiency (ΔfSi) is calculated for a case
isotope evolution model. Central map shows the location of marine sediment cores (red
in the late Quaternary. Background is the world ocean surface water DSi concentration
; Core GeoB2107–3: Hendry et al. (2012); Core HU89038-PC8: Hendry et al. (2014); Core
Maier et al. (2013); Core MD01-2515: Pichevin et al. (2012); Core MD03-2601: Panizzo
); Core MD99-2198: Griffiths et al. (2013); Core ODP1240: Pichevin et al. (2009); Core
68-8: Abelmann et al., 2015; Core RC11-94: De La Rocha et al. (1998); Core RC13-259:
rt et al. (2013); Core SO202-27-6: Maier et al. (2016); Core TTN057-13PC4: Horn et al.
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Fig. 7. Longitudinal change in river DSi δ30Si. Fly: Frings (unpublished data); Congo:
Cardinal et al. (2010); Ganges: Frings et al. (2015) and Fontorbe et al. (2013); Yangtze:
Ding et al. (2011); Nile: Cockerton et al. (2013); Yellow: Ding et al. (2004).

Fig. 8.Range of δ30Si seen inDSi from rivers, porewaters and groundwaters as a function of
DSi/(Na + K), a proxy for weathering congruency. The brown box shows an approximate
endmember composition of the upper continental crust (UCC) (Rudnick and Gao, 2003;
Savage et al., 2013), while the dashed lines show the expected evolution of δ30Si
expected as DSi is removed under two simple model scenarios: i) a finite-pool model
which produces a Rayleigh distillation curve (i.e. a straight line in log-linear space) or ii)
an open system (curved line in log-linear space), equivalent to the ‘batch reactor’ model
of Bouchez et al. (2013). These two endmember models provide an envelope of
permissible variability for any given system which will likely display behaviour
intermediate between the two. The upper x-axis shows a conversion of DSi/(Na + K) to
fSi, the fraction of DSi remaining in solution, assuming a starting DSi/(Na + K) of 3.53
after Hughes et al. (2013).
Data sources as in Fig. 4, with additional geochemistry data from Bagard et al. (2011),
White et al. (2009), Dowling et al. (2003) and Pogge von Strandmann et al. (2006, 2008)
where necessary. Data were corrected for rainwater solute inputs only if available in the
original publication.
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biological activity can affect DSi concentrations (Conley, 1997; Fulweiler
and Nixon, 2005), so the sampling needs to be time-averaged (or at
least representative) — a condition rarely met. Finally, the use of a uni-
versal Si/(Na+ K)parent for all rivers is questionable due to variability in
primary mineral cation content.

Despite these caveats, it serves as a starting point for discussion. As
plotted in Fig. 8, δ30Si of continental water DSi trends towards higher
values as it is progressively removed from solution (i.e. moving from
right to left). Almost all river waters are accommodated within the en-
velope defined by the Rayleigh and steady-state fractionation models
with molar Si/(Na + K)parent ratios of 3.5 or 6.7, and fractionations of
−1‰ and −2‰, respectively. This normalisation procedure suggests
that somewhere between 50% and N95% of the Si that is mobilised
from parent material is reincorporated into secondary phases (upper
x-axis), and that this is a first order control on the variability of silicon
isotope ratios in river waters. But beyond this rather crude picture,
many questions about the distribution of δ30Si in continental waters re-
main. Why are soil and ground waters sometimes more negative than
the parent material? What causes the large scatter in the evolution of
δ30Si as a function of fSi?

In the following we briefly discuss three complicating factors: i) the
potential for heterogeneous source material, ii) the potential for vari-
able fractionation factors and iii) mass-balance constraints on the man-
ifestation of isotopic fractionation.
3.1.1. Heterogeneous source material
The above discussion assumed that the parent material is relatively

homogenous with regards to its silicon isotope composition. To explain
the low (b0‰) values, it may be that the assumption of negligible vari-
ation in parent δ30Si is invalid. This is the explanation favoured for low
δ30Si (−1.50–1.54‰) groundwater in Arizona (Georg et al., 2009b),
the Ganges–Brahmaputra Delta (Georg et al., 2009a) and the
Australian Great Artesian Basin (Pogge von Strandmann et al., 2014),
where dissolution of (low δ30Si) clay minerals is invoked as a source
of low δ30Si DSi.
3.1.2. Variable fractionation factors
Laboratory studies have demonstrated a reaction-rate and tempera-

ture dependency of silicon isotope fractionation, as well as a dependen-
cy on ambient dissolved Al concentrations (Geilert et al., 2014; Oelze
et al., 2014, 2015; Roerdink et al., 2015). They have also demonstrated
that instantaneous fractionations between solute and solid can be
interpreted within the framework proposed by DePaolo (2011). This
framework relates the net isotope fractionation to the ratio of forward
and backward reaction rates (Rf and Rb respectively, representing min-
eral neoformation and (re)dissolution of the solid). These two reactions
are associated with kinetic isotope fractionation factors (αf and αb),
which are normally b1, so both favour the transfer of the light isotope.

Image of Fig. 7
Image of Fig. 8


Fig. 9.Variation of δ30Si of river DSi as a function ofweathering intensity, as defined byBouchez et al. (2014),whereW refers to the rate of chemicalweathering andD to the total (chemical
plus physical) denudation rate. At both low and high weathering intensities, there is little silicon isotope fractionation since either close to 0% or close to 100% of Si is exported as solutes,
respectively. The grey shaded region indicates the approximate isotopic composition of sourcematerial (i.e. ca.−0.25‰). *δ30Si asweighted average of annuallymeasured values; all other
values are spot samples. **Chemical and physical erosion rates assumed to be captured by instantaneous total dissolved solids (TDS) and total suspended solid (TSS) data, respectively.
δ30Si data sources: Amazon: Hughes et al. (2013); Brahmaputra: Georg et al. (2009a) Californian streams: De La Rocha et al. (2000); Congo basin: Cardinal et al. (2010) and Hughes et al.
(2011); Fly River: A. Kurtz (unpublished data); Ganges basin: Frings et al. (2015); Hawaiian Rivers: Ziegler et al. (2005a); Icelandic rivers: Opfergelt et al. (2013) and Georg et al.
(2007a); Kalixälven: Engström et al. (2010); Lena River: Engström (2009); Puerto Rican streams: Ziegler et al. (2005b); Tana River: Hughes et al. (2012); Yangtze: Ding et al. (2004);
Yellow: Ding et al. (2011). Superscripts refer to source of physical and/or chemical denudation rate data: 1: Gaillardet et al. (1997); 2: Milliman and Farnsworth (2011); 3: Dupré et al.
(1996); 4: Laraque et al. (2009); 5: A. Kurtz (unpublished data); 6: Picouet et al. (2002); 7: Li (1988); 8: Vigier et al. (2006); 9: Opfergelt et al. (2013); 10: Land et al. (1999); 11:
Riebe et al. (2003).
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The net reaction rate, Rp is simply Rf − Rb, while the apparent fraction-
ation factor, αp is a function of the two fractionation factors and the
ratio of the two reaction rates (see discussion in Oelze et al., 2014). At
far-from-equilibrium conditions when Rp ≫ Rb, the instantaneous
αp ≈ αf. Conversely, when Rp is small relative to Rb the reaction is at,
or close to, isotopic equilibrium and αp is equivalent to an equilibrium
isotope fractionation factor, αeq.

The magnitude of the equilibrium fractionation factor, αeq between
DSi and solid has been experimentally determined at−0.30‰ for Si ad-
sorption onto Al-hydroxides (Oelze et al., 2014) and ~0‰ for amor-
phous silica precipitation (Roerdink et al., 2015). In the same
experiments, the initial (kinetic) silicon isotope fractionations between
solution and solid was determined at −1.8 to −3.0‰ (Oelze et al.,
2014) and −0.7 to −3.5‰ (Roerdink et al., 2015), demonstrating that
for any given process the associated fractionation cannot be assumed
constant.

Interestingly, given the long formation times for secondaryminerals,
and the fact that many river waters are apparently at or close to chem-
ical equilibrium (a prerequisite for isotopic equilibrium), then it might
be expected that equilibrium isotope effects (with fractionations close
to 0‰) should dominate (Dupuis et al., 2015). The consistently low
δ30Si of secondary minerals (Fig. 4) suggests this is not the case. Oelze
et al. (2014) resolve this by proposing that the fractionation occurs dur-
ing the initial Si absorption on Al-hydroxides, that are subsequently
convertedwith no fractionation (no stoichiometric change) tomore sta-
ble clay minerals via hydroxy-aluminosilicate intermediates. Alterna-
tively, the surfaces of the neoformed solids may be at isotopic
equilibrium with the surrounding fluids, while the bulk of the solid is
protected.

3.1.3. The manifestation of isotopic fractionation
While the two isotope fractionation models in Fig. 6 adequately de-

fine the limits of allowable variation in δ30Si of river DSi, no model pro-
vides a good fit to the global data. This may result from rivers inherently
following either a Rayleigh or a steady-state isotope evolution, the ex-
planation favoured by Hughes et al. (2013) for rivers of the Amazon
basin and Georg et al. (2007a) for Icelandic streams. However, there is
no reason to expect a given river –which integrates a suite of upstream
processes – to correspond to one model. Strictly, the Rayleigh and
steady-state models are applicable only to simple scenarios that may
rarely be found in nature; the most likely case is an intermediate
scenario.

Some rivers do seem to experience isotopic evolution approaching
Rayleigh behaviour. The highest river δ30Si values yet observed origi-
nate from rivers that flow though dry lowland regions, often with ex-
tensive irrigation systems (Cockerton et al., 2013; Ding et al., 2011). In
these cases, evapotranspirationwater losses can increaseDSi concentra-
tions, thereby a) reducing solubilisation of fresh DSi and b) promoting
the precipitation and/or preservation of secondary phases, with associ-
ated kinetic isotope effects leaving the residual water 30Si enriched. In
other words, these systems approximate Rayleigh-type behaviour in
that they are isolated from fresh inputs of DSi, while DSi is progressively
removed.

Conversely, some rivers have very little isotopic fractionation be-
tween parent material and DSi, i.e. highly congruent weathering. As
shown in Fig. 9, the lowest riverine δ30Si values occur at either end of
a weathering intensity spectrum, defined as the ratio of chemical ero-
sion, W, to total denudation, D; where D = W + physical erosion, E
(Bouchez et al., 2014). At the high-intensity end (W/D near 1), these
correspond to black-water rivers in tropical environments with soils
that are almost completely desilicified (Cardinal et al., 2010; Hughes
et al., 2013). At the low intensity end (W/D near 0), this corresponds
to rivers that drain catchments with high physical erosion rates and
low sediment residence times (Georg et al., 2006, 2007a). This implies
the presence of a degree of equifinality to river δ30Si which is a direct
consequence of mass balance. In other words, there can be no observ-
able fractionation if no secondary phases are formed (as in low intensity
systems), or if all secondary phases are also re-solubilised (as in high in-
tensity systems). In this way, we can see that a riverine δ30Si value de-
pends not just on the magnitude of the fractionation factor, but also
whether the weathering regime permits it. This is broadly consistent
with the steady-state isotope mass-balance model presented by
Bouchez et al. (2013). This treats theweathering zone as a batch reactor
in which the degree of isotopic fractionation observed in waters de-
pends on the ratio of export of fractionated solid (i.e. clay or plant resi-
due) to the production of solute from primary minerals.
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Table 1
Summary of the modern day inputs of DSi to the global ocean, together with estimates of their Si isotope composition. Previous budgets (mass only) are shown for comparison. TDLR =
Tréguer and De La Rocha (2013); T95 = Tréguer et al. (1995); WM83 = Wollast and Mackenzie (1983).

This compilation Previous budgets

DSi δ30Si TDLR T95 WM83

Flux ×1012 mol yr−1 ± ‰ ±‰ (1 sd) Level of understanding ×1012 mol yr−1

River DSi 6.33 0.36 1.25 0.68 OK 6.2 ± 1.8 5.6 ± 0.6 7.25
Estuarine removal −0.63 +0.10 Poor −1.5 ± 0.5 −0.6 ± 0.5
Dissolution of SPM 1.90 1.00 −0.18 0.25 Poor 1.1 ± 0.2 – –
Groundwater DSi 0.65 0.54 0.19 0.86 Poor 0.6 ± 0.6 – –
Dissolution of dust 0.30 0.20 −0.65 0.43 Poor 0.5 ± 0.5 0.5 ± 0.5 –
Hydrothermal fluids 0.60 0.40 −0.30 0.15 Poor 0.6 ± 0.4 0.2 ± 0.1 0.89
Low temperature alteration of oceanic crust 0.40 0.30 0.00 0.5 Poor 1.9 ± 0.7 0.4 ± 0.3 0.36

9.55 1.31 0.74 0.17 9.4 6.1 8.5
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For themajority of rivers that fall between these twoweathering re-
gimeextremes, themanifestation of silicon isotope fractionationmay be
dependent on the kinetics of secondary phase formation. In other
words, the longer fluids spend in the weathering zone, the longer sec-
ondary phases have to precipitate. At greater mean water residence
times, claymineral formation is increased, pushing δ30Si higher. This in-
terpretation is corroborated by δ30Si changes along river longitudinal
transects (Cardinal et al., 2010; Cockerton et al., 2013; Ding et al.,
2004, 2011; Fontorbe et al., 2013; Hughes et al., 2012; Frings et al.,
2015; Fig. 7). These studies show that there is a consistent tendency
for δ30Si to increase downstream, presumably as water and sediment
residence times increase in the lowland portions of catchments. The
greater interaction times implied should increase the degree of second-
ary mineral neoformation as the limits to clay precipitation (and there-
fore Si isotope fractionation) are overcome. A similar argument can be
made based on the coincidence of the periods of lowest discharge (lon-
gest residence times) and highest δ30Si values for annually monitored
rivers (Delvaux et al., 2013; Engström et al., 2010; Georg et al., 2006;
Hughes et al., 2011, 2013; Pokrovsky et al., 2013; Fig. 5d).

3.2. Outlook: understanding and interpreting δ30Si of DSi in continental
waters

Taken altogether, these observations pose problems for modelling
and interpreting δ30Si at the Earth surface because interpretation of
δ30Si values ultimately depends on an estimate of the fractionation be-
tween solution and solid. Yet the magnitude (and perhaps even the
sign) of fractionation varies as a function of reaction rate, and the degree
to which the fractionation is able to be manifest depends on the com-
pleteness of the reaction or transformation. This implies that Si dynam-
ics within individual systems should be rigorously understood before
interpretations are made based on silicon isotope ratios. Note also that
removal of DSi to biotic (diatoms, vascular plants) or abiotic (clays, Fe-
oxides) phases cannot be inferred based on δ30Si of the residual DSi
alone.

4. Present-day inputs of DSi to the global ocean

The most important sources of DSi to the global ocean are supplied
by the continental fluvial system. Chiefly, these are (i) DSi in rivers
and (ii) groundwaters, and (iii) the dissolution of river particulate mat-
ter. DSi deriving from these sourcesmustfirst pass throughmany fluvial
‘filters’, including wetlands, lakes, floodplains, estuaries and the coastal
zone before reaching the open ocean. Other inputs include (i) the disso-
lution of aeolian dust and (ii) seafloor weathering and hydrothermal
fluid circulation. In this section, the state-of-the-art regarding knowl-
edge of the magnitude and isotopic compositions of the inputs to the
ocean are presented (summarised in Table 1). We explore the
derivation of each term in the budget and highlight associated uncer-
tainties and knowledge gaps.

4.1. River DSi flux

4.1.1. Magnitude of river DSi flux
The modern river DSi flux is reasonably well constrained. DSi is eas-

ily measurable and has limited speciation over the pH range ofmeteoric
waters (Iler, 1979). Global estimates of river DSi fluxes span almost a
century (Beusen et al., 2009; Clarke, 1924; Dürr et al., 2011b;
Livingstone, 1963) and are surprisingly consistent despite differences
in data availability and upscaling procedures. Average river water DSi
concentrations are ca. 160 μM (9.5 mg l−1 SiO2) (Dürr et al., 2011b). A
nutrient export model using a stepwise multiple linear regression ap-
proach and developed at the watershed scale (NEWS-DSi) (Beusen
et al., 2009) predicts DSi fluxes of 6.33 × 1012 mol yr−1 to the
coastal ocean, with 2.5–97.5 percentile values at 5.66 and
7.11 × 1012 mol yr−1, respectively. A similar approach (Dürr et al.,
2011b) uses essentially the same data but extrapolates at the scale of
pre-defined coastal segments to arrive at a similar estimate
(6.18 × 1012 mol yr−1), lending further confidence to the NEWS-DSi
model, whose output we retain as the best estimate of river DSi fluxes.

4.1.2. δ30Si of river DSi flux
To date, at least 557 δ30Si determinations exist for river water DSi

(Fig. 4). These span from −0.14‰ to 4.66‰ with a mean of 1.28‰
(n= 544) and follow a roughly normal distribution (Fig. 4) with a stan-
dard deviation of 0.68‰. It is worth noting that seasonal and longitudi-
nal variability in river DSi δ30Si is typically large, on the order of 1.0‰. As
noted above δ30Si generally (i) decreases with increasing discharge and
(ii) increases with distance downstream. In the absence of many rivers
sampled over an annual period near their mouths, we retain the simple
mean of 1.28 ± 0.68‰.

4.1.3. The role of estuaries in modulating river Si fluxes
The estimates of sediment and DSi delivery via rivers to the ocean

are based on sampling of the river freshwater endmember, often a con-
siderable distance upstream of its entrance to the ocean. It is acknowl-
edged that storage of sediment fluxes between gauging stations and
the end of the freshwater endmember may perhaps cause global sedi-
ment delivery to be overestimated (Allison et al., 1998; Milliman and
Farnsworth, 2011). A similar problem exists with DSi as the river passes
through the salinity gradient and across a continental shelf to reach the
open ocean. Estuarine and other coastal environments are often highly
productive, owing to their proximity to continentally sourced nutrients.
If this production removes Si and permanently stores it in estuarine or
deltaic sediments, then the amount of DSi entering the global ocean
will correspondingly decrease. Removal of DSi will be manifest
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as non-conservative mixing between the freshwater and saline
endmembers (Bien et al., 1958), and can occur biologically (Conley
and Malone, 1992) and abiotically (Chou and Wollast, 2006). Diatom
blooms in the mixing zone may consume up to 50% of riverine DSi in
the Amazon River (DeMaster, 2002) and almost 100% in the Scheldt
(Chou and Wollast, 2006), although most of this will be regenerated.
Using published transects along salinity gradients, DeMaster (2002) in-
ferred 0.6 × 1012 mol Si yr−1 for estuarine Si removal based on the de-
gree of non-conservative mixing, whichwe use in our budget (Table 1).
The global estuarine surface area is ~1.1 × 106 km2 (Dürr et al., 2011a),
implying a sedimentation rate of ~33 g SiO2 km−2 yr−1, close to
lake sedimentation rates (Frings et al., 2014a), and lower than
the few estuarine BSi accumulation rates found in the literature
(60–500 g SiO2 km−2 yr−1) (Colman and Bratton, 2003; Qin
et al., 2012; Carbonnel et al., 2013).

Previous ocean Si budgets have included reverseweathering in estu-
arine or deltaic regions as a discrete loss term (Tréguer et al., 1995;
Tréguer and De La Rocha, 2013). The term reverse weathering refers
to the formation of authigenic clay minerals in continental margins,
and was first proposed to balance ocean element budgets (Mackenzie
and Garrels, 1966) — indeed, it is known to be a key sink for
many elements. Reverse weathering is thought to occur as a result
of the interaction of degraded continental aluminosilicates with
ocean porewaters following the approximate reaction scheme:
(alumino)silicate + cations + SiO2 + HCO3

− = cation-rich
aluminosilicate + CO2 + H2O. This process occurs in different settings,
and has been inferred indirectly from porewater profiles (Mackenzie
and Kump, 1995; März et al., 2015; Michalopoulos and Aller, 1995,
2004), observed in situ (Michalopoulos et al., 2000; Presti and
Michalopoulos, 2008), or experimentally replicated (Loucaides et al.,
2010). It is suggested to account for up to 25% of DSi removed from
the ocean (Holland, 2005). However, porewaters of marine sediments
are almost exclusively enriched in DSi relative to the overlying water
column (März et al., 2015; Ragueneau et al., 2000); the benthic DSi
flux across the sediment/water interface is always positive. In this con-
text, reverse weathering should be considered as a diagenetic pathway
for BSi (Aller, 2014) that enhances its preservation efficiency, rather
than being a sink per se.

4.1.4. Isotopic effect of estuarine Si removal
DeMaster (2002) estimated that ~10% of river DSi is sequestered

within estuaries today as biogenic silica. If this is associated with a typ-
ical fractionation of−1.1‰ (De La Rocha et al., 1997), then the δ30Si of
river DSi entering the ocean is shifted towards a higher value by ~0.11‰
due to the presence of an estuarine filter, assuming no fractionation as-
sociated with reverse weathering. There is little work available to test
this conclusion, and the available studies are equivocal. In the Tana
River, Kenya, DSi mixes conservatively along the salinity gradient so
there is no Si isotope fractionation (Hughes et al., 2012). In the Lena
River delta, DSi is removed along the salinity gradient, but counter to
expectations δ30Si also decreases (Engström, 2009), interpreted as
mixing with an unidentified 30Si deplete water mass. Conversely, in
the Elbe River estuary (Weiss et al., 2015) and the tidal freshwater sec-
tion of the Scheldt river (Delvaux et al., 2013), DSi concentrations are
depleted – presumably by biological activity – and δ30Si of the residual
DSi increases as expected, at least during the times of the year in
which silicifying organisms grow.

4.2. Dissolution of river particulate matter

4.2.1. Magnitude of DSi flux from dissolution of river particulate matter
River suspended particulate matter (SPM) is predominantly silicate

material (Viers et al., 2009), some of which will dissolve in the ocean.
Conventionally, river SPM is assumed to dissolve sufficiently slowly
that it does not contribute to biological cycling. However, it need be
only sparingly reactive to have a large effect (Oelkers et al., 2011;
Jeandel and Oelkers, 2015), and recent work suggests that dissolution,
desorption or ion-exchange of river SPM in estuaries and the coastal
zone is indeed large enough to be a substantial component of ocean el-
emental or isotope budgets (Gislason et al., 2006; Jeandel et al., 2011; \
et al., 2014; Oelkers et al., 2011). Estimates of themagnitude of the total
river particulate flux cluster around 14–20 × 109 t yr−1 (e.g. Milliman
and Meade, 1983; Syvitski et al., 2005) with a recent estimate being
19 × 109 t yr−1 (Milliman and Farnsworth, 2011). How much of this
SPM will dissolve in the ocean? Insight can be gained by considering
the amount of BSi carried by rivers, or by simple experimental ap-
proaches exploring the interaction of river sediment and seawater.

4.2.1.1. River transport of biogenic silica. Conley (1997) quantified the BSi
material carried by rivers at 1.05 ± 0.20 × 1012 mol yr−1, based on a
simple extrapolation of surface water samples from a small dataset of
11 rivers. However, with a growing awareness that the conventional
measurement protocols (weak alkali leaches, e.g. DeMaster, 1981) do
not target BSi per se, but rather a range of non-crystalline siliceous
phases, the term ‘amorphous silica’ (ASi) is now more prevalent
(Barão et al., 2014, 2015), although some fraction of river SPM can in-
deed be ‘true’ BSi (Cary et al., 2005; Meunier et al., 2011). Dissolution
rates of ASi are greater, by around a factor of 5, in the higher pH and
electrolyte concentrations of seawater relative to freshwater
(Loucaides et al., 2008, 2012). As a result, the ASi fraction is assumed
to dissolve rapidly along the salinity gradient, an assumption generally
borne out in studies of estuarine particulate matter (Carbonnel et al.,
2013; Lehtimäki et al., 2013; Pastuszak et al., 2008). Frings et al.
(2014b) showed that in the Ganges basin, the Si extracted by a conven-
tional weak alkali leaching protocol (DeMaster, 1981) is a relatively
consistent fraction (mean ± σ = 1.2 ± 0.78%) of the total sediment
load. Extending the calibration dataset to include 415 paired and global-
ly distributed ASi-SPM measurements, Frings (2014) estimated that
~0.6% of global river SPM is ‘ASi’. Taking a total SPM flux of 19 × 109 t,
this implies that 1.9 × 1012 mol yr−1 ASi is carried by rivers.

4.2.1.2. Experimental approaches. Experimental work to investigate the
interaction of river sediment and seawater has mostly used riverbed
material from basaltic islands (e.g. Jones et al., 2012a,b; Pearce et al.,
2013; Oelkers et al., 2011), though Jones et al. (2012b) also used mate-
rial from theAmazon,Mississippi andOrange rivers. Over the full course
of these experiments, only about 0.005 to 0.01% of the Si in the sediment
was solubilised. However, given thehigh solid:solution ratios (ca. 1:3), a
near-equilibrium concentration was quickly obtained (≪1 month), im-
peding further dissolution. Focusing on basaltic glass, Morin et al.
(2015) confirmed Si dissolution rates increase as a function of salinity.
Their experiments were conducted at 90 °C, and based on an extrapola-
tion to 16 °C and assumptions about the quantity of sediment deriving
from volcanic islands, they argue 2–8 × 1012 mol Si yr−1 is released
from basaltic glass dissolution alone, broadly equivalent to the river
DSi flux. The young, basaltic sediment used in these studies is known
to have high dissolution rates (Dupré et al., 2003) but is unlikely to be
representative of global river SPM. These problems hamper extrapola-
tion of the results to a global scale — further field or lab-based ap-
proaches in granitic or meta-sedimentary terrains are required.
Nevertheless, they demonstrate the potential importance of dissolution
of terrigenous material, which is reinforced by a mass-balance of the
Mediterranean Si cycle that invokes dissolution of 1% of river SPM to
close the budget (Jeandel and Oelkers, 2015).

Given that the ASi content of river SPM is of a very similar order of
magnitude (see above), this suggests the two approaches at least par-
tially target the same Si. The relevant questions then become: (i) To
what extent do the measurement protocols for river ASi reflect the be-
haviour of river sediment in seawater? (ii) To what extent do the ex-
traction protocols target amorphous silica? and (iii) To what extent is
there a discrete ASi pool? These questions require further research.
For the time being, we assume that the protocols developed for BSi
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analysis (e.g. DeMaster, 1981) fortuitously capture the amount of all Si
likely to dissolve in seawater – both amorphous and lithogenic – and
therefore take a flux of 1.9 × 1012 mol yr−1 as the input of DSi to the
ocean from terrigenous sediment dissolution, which may need revising
upwards if the results of Morin et al. (2015) can be confirmed.

4.2.2. δ30Si of DSi flux from dissolution of river particulate matter
The δ30Si of bulk SPM has beenmeasured only in the Yellow and the

Yangtze rivers (Ding et al., 2004, 2011). Both systems have low δ30Si
SPM (mean± 1 σ=−0.02 ± 0.20‰ and−0.34 ± 0.19‰, respective-
ly). The δ30Si of ASi has never been directly assessed in river sediment,
although we can extrapolate from terrestrial ecosystem studies that
these phases, whether formed biogenically (e.g. diatoms, phytoliths)
or inorganically (e.g. poorly crystalline aluminosilicates), should tend
towards even lower δ30Si (Fig. 4). For now, we take themean of the Yel-
low and Yangtze rivers of −0.18 ± 0.25‰ as representing the Si isoto-
pic composition of terrigenous sediment.

4.3. Submarine groundwater discharge (SGD)

4.3.1. Magnitude of DSi flux from submarine groundwater discharge
It has long been recognised that the discharge ofwater from ground-

water directly into the ocean may be a significant term ecologically,
chemically and volumetrically (Johannes, 1980). Even if the flow rates
are low, integrated over the entire length of a shoreline and combined
with the generally higher solute concentrations in groundwater, SGD
fluxes can be important (Moore, 1996). There is some confusion regard-
ing the definition of submarine groundwater discharge. It is generally
taken tomean any flow of water out across the seafloor, and so includes
both the terrestrially derived freshwater endmember and amuch larger
recycled seawater component (Burnett et al., 2006). Here, we restrict
ourselves to the component that derives directly from terrestrial infil-
tration of meteoric waters, although if the recirculating component in-
teracts substantially with continental silicates it could be an important
and completely unexplored term in the global Si cycle. The patchy and
variable nature of this water flux has made it difficult to quantify
(Burnett et al., 2006). Nevertheless, significant regional inputs of DSi
from SGD have been demonstrated in e.g. the Mediterranean (Rodellas
et al., 2015; Weinstein et al., 2011), the Bay of Bengal (Georg et al.,
2009a) and from volcanic islands (Schopka and Derry, 2012).

To our knowledge, the only global estimates of the SGD contribution
to the ocean Si budget are 0.4 and 0.6 × 1012mol DSi yr−1 to the oceans,
or approximately 6–10% of the river DSi flux (Laruelle et al., 2009;
Tréguer and De La Rocha, 2013). These are based on the product of a
total SGD of 2000 km3 yr−1 (adapted from Slomp and Van Cappellen,
2004) and an arbitrarily assigned groundwater DSi concentration of
200 or 340 μM. Building on this approach, we note that estimates of
the volume of SGD (Slomp and Van Cappellen, 2004; Knee and Paytan,
2011; Burnett et al., 2006; Taniguchi et al., 2002) range from 0.1
to 10% of the global river flux (which is approximately
37 × 103 km3 yr−1; Dai and Trenberth, 2002). These estimates are com-
monly based on global water budgets, with SGD being the residual of
the other terms, such that the propagated uncertainty is of the same
order of magnitude as the flux itself. Nonetheless, a consensus seems
to be developing for a total flux of approximately 5% of river discharge,
i.e. 1850 km3 yr−1, which we retain as the total SGD water flux with an
uncertainty of ±50%.

We now turn our attention to the ‘mean’ groundwater DSi concen-
tration. To our knowledge, no systematic survey of global groundwater
geochemistry is available. A geochemical survey of 1785 European bot-
tled waters yields a mean ± 1σ DSi concentration of 319 ± 285 μM
(Birke et al., 2010). Querying the database maintained by the USGS
(the ‘National Water Information System’/‘Water Quality Samples
for the Nation’) for all well data in the USA, for measurements
made in 2014, yields mean ± 1σ DSi concentration of 380 ± 250 μM
(n = 2081). Based on 2640 datapoints from regional datasets, mostly
from the continental United States, Davis (1964) suggested a median
concentration for groundwater DSi of 300 μM. We take the mean of
the USGS data of 380 ± 250 μM as representing the concentration of
DSi in groundwater inputs to the ocean. Combining this with the total
volume of SGD flow, we obtain a total SGD DSi flux of 0.65 ±
0.54 × 1012 mol yr−1, or about 10% of the river DSi flux.

4.3.2. δ30Si of DSi flux from submarine groundwater discharge
The range of δ30Si reported for groundwater DSi is large (Fig. 4) and

spans from −0.15‰ to +1.34‰ at various depths in the Bengal Basin
(Georg et al., 2009a), from +0.35‰ to +1.01‰ for Icelandic springs
(Opfergelt et al., 2011), from −1.42 to +0.56‰ along a 100 km
flowpath in a sandstone aquifer in Arizona (Georg et al., 2009b) and
from −1.50 to −0.85‰ in the Great Artesian Basin, Australia (Pogge
von Strandmann et al., 2014). Isolated values of +0.3‰, +0.5‰ and
+0.7‰ have also been reported in Hawaiian systems (Ziegler et al.,
2005a,b), and up to +2.07‰ in a Siberian permafrost landscape
(Pokrovsky et al., 2013). Unsurprisingly, given the diversity of systems
and processes, there is no relationship between groundwater DSi con-
centration and δ30Si. We therefore take the mean of the 44 published
values (Fig. 4) of +0.19‰, with a range of 0.9‰, as representing the
δ30Si of groundwater DSi inputs to the ocean.

4.4. DSi inputs from dissolution of atmospheric dust

4.4.1. Magnitude of DSi flux from dissolution of aeolian dust
Existing estimates of DSi inputs from aeolian dust are essentially

back-of-the-envelope calculations based on deposition rates and esti-
mates of the fraction liable to dissolve as a function of residence time
in the water column. All global Si budgets to date (Laruelle et al.,
2009; Tréguer et al., 1995; Tréguer and De La Rocha, 2013) take a
value of 0.5 × 1012 mol Si yr−1. How realistic is this value?

Somewhere between 500 and 5000 × 1012 g dust yr−1 is currently
entrained into the atmosphere (Engelstaedter et al., 2006), of which
134 to 910 × 1012 g yr−1 is deposited in the oceans (Duce et al., 1991;
Jickells et al., 2005). This is mostly in the form of wet deposition, i.e.
scavenged by precipitation, although gravitational (‘dry’) settling of
larger particles may be important in nearshore environments
(Prospero andArimoto, 2008). If the composition of theupper continen-
tal crust (Rudnick and Gao, 2003) reflects the composition of mineral
dust, some 67% is SiO2. In other words, somewhere between 1.5 and
10.2 × 1012 mol Si yr−1 is deposited on the ocean surface.

Anywhere between b1% to more than 10% may potentially dissolve
(Guerzoni et al., 1999; Tegen and Kohfeld, 2006), and a single value is
hard to prescribe given regional differences in source composition, par-
ticle size, etc. Ridgwell et al. (2002) take a solubility of 6.6% for their
model study, and Maring and Duce (1987) estimated up to 8–10% of
Al contained in aerosol aluminosilicates would dissolve in seawater
within 60 h. Using values of 1.5% to 5% for the fraction of dust which dis-
solves reasonably reproduce the distribution of global surface-ocean
dissolved Al (Gehlen et al., 2003; Han et al., 2008; Measures and Vink,
2000). Si and Al co-occur as aluminosilicates, so assuming the same sol-
ubility for Si as Al (i.e. 1.5 to 5%, while acknowledging they have differ-
ent fates in solution), provides DSi inputs from aerosol dissolution of
0.023 to 0.50 × 1012 mol Si yr−1, so the Tréguer and De La Rocha
(2013) estimate (0.5 × 1012 mol yr−1) is probably an upper bound.
Clearly, the two key terms in this derivation (dust deposition rates
and Si solubility) need much better quantification.

4.4.2. δ30Si of DSi flux from dissolution of aeolian dust
In the absence of directmeasurements, there are twomeans of iden-

tifying the silicon isotope composition of aeolian dust. Themean of pub-
lished bulk soil δ30Si determinations (Fig. 4), equal to −1.08 ± 0.77‰
(n=195), may suffice if soils can be considered broadly representative
of the sources of dust to the ocean. Alternatively, the Pleistocene loess
samples analysed by Savage et al. (2013) provide a mean of −0.22 ±
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0.07‰ (n = 13), and a similar value of −0.2‰ provided plausible re-
sults in an endmember analysis of Si sources in the glacial East
Philippines Sea (Xiong et al., 2015). However, loess deposits tend to
be towards the larger end of the dust size spectrum (Muhs, 2013),
while the long-range transport particles that enter the marine realm
may be smaller clays that tend towards lower δ30Si values.We therefore
take a value intermediate between soils and loess of −0.65‰, but sug-
gest that it should be empirically determined in future.

4.5. Non-continental sources of DSi

Interaction between seawater and ocean basalts is an important
control on seawater chemistry on geological timescales (Staudigel,
2014). Seawater flows through the permeable upper oceanic crust,
where it may be heated by residual heat. Alkalinity, cations and DSi
can derive from the reactions that occur. Compiling the available
literature, Tréguer and De La Rocha (2013) estimate that the high
temperature, axial component of fluid recirculation introduces 0.2–
0.8 × 1012 mol Si yr−1, and the low temperature ridge component
0–0.15 × 1012 mol Si yr−1. We retain this estimate, in total ca.
0.6 ± 0.4 × 1012 mol DSi yr−1 from hydrothermal systems. This
DSi probably has an initial δ30Si value of −0.4 to −0.2‰, based on
two samples collected at the East Pacific Rise by the submersible Alvin
at ~300 °C and 11–15 mM DSi (De La Rocha et al., 2000), but this may
change as the expelled fluid cools and becomes supersaturated, induc-
ing silica precipitation. Whether or not precipitation of silica in such a
process is important and if it is associated with isotope fractionation is
unclear. The siliceous sinter deposits associated with hydrothermal or
hot spring systems tend to be 30Si depleted (Douthitt, 1982; Ding
et al., 1996), implying the presence of an associated fractionation, per-
haps as large as −4.4‰ (Geilert et al., 2015) although the effect on
the residual DSi will depend on the proportion of the fluid DSi that is
precipitated.

DSi can also be supplied fromweathering of seafloor basalt, although
the distinction between solutes deriving from hydrothermal fluid circu-
lation and basalt weathering is ultimately arbitrary. Tréguer et al.
(1995) included low-temperature alteration in their budget at 0.4 ±
0.3 × 1012 mol yr−1, which can be traced to Maynard (1976) and
Wolery and Sleep (1976) who invoked basalt alteration to balance
ocean elemental budgets. Based on benthic DSi efflux rates, Tréguer
and De La Rocha (2013) updated this value to 1.9 × 1012 mol DSi yr−1,
but including dissolution of terrestrial lithogenicmaterial whichwe sep-
arated above. We therefore retain the earlier Tréguer et al. (1995) esti-
mate of 0.4 ± 0.3 × 1012 mol yr−1. Its δ30Si value is also uncertain:
secondary aluminosilicates are common in altered seafloor basalts,
confirming that alteration is incongruent and therefore probably associ-
ated with Si isotope fractionation.We provisionally take 0.0± 0.5‰, but
note that high and low-temperature hydrothermal fluids are probably
isotopically distinct. It should be highlighted that DSi fluxes deriving
from oceanic basalt are perhaps themost poorly understood and uncon-
strained in the global Si cycle.

4.6. Synthesis of DSi inputs to the global ocean

Based on the above, a total annual input of DSi to the modern ocean
can be calculated at 9.55±1.30×1012molwith aflux-weighted δ30Si of
0.74 ± 0.17‰ (Table 1). To our knowledge, this is the first estimate of
the ocean δ30Si budget. Note that of the component fluxes, few are
known to a reasonable degree of precision. Uncertainties are hard to
prescribe given the limited data availability. The total ocean volume is
~1.3 × 1021 l. According to the gridded climatology of Gouretski and
Koltermann (2004), there is an average DSi concentration of
88 μmol kg−1 (or ca. 85 μmol/l−1), for a total mass 112 × 1015 mol.
For total inputs of 9.55 × 1012 mol yr−1 the estimated residence time
for dissolved Si in the global ocean, defined as inventory/input, is just
under 12,000 years. This is towards the lower end of previous estimates
that cluster around 15,000 to 20,000 years (Broecker and Peng, 1982;
Laruelle et al., 2009; Quinby-Hunt and Turehian, 1983; Sarmiento and
Gruber, 2006; Tréguer et al., 1995). These typically have a similar total
inventory of DSi; the smaller residence time derived here is a result of
more inputs being considered and is consistent with that calculated by
Tréguer and De La Rocha (2013) (~10,000 years).

5. Potential for variability in continent-ocean Si fluxes

If we understand the parameters that control themagnitude and iso-
topic composition of the Si fluxes to the ocean, we can use this under-
standing to place limits on how much Si fluxes to the ocean may vary.
Given the ca. 12 ka residence time of Si in the ocean (Section 5), pertur-
bations to the inputs must occur on similar timescales to affect ocean Si
cycling (Richter and Turekian, 1993), so we focus on the processes that
affect continental Si cycling over these timescales.

The world at the Last Glacial Maximum (LGM, ca. 21 ka BP) differed
greatly to themodernworld. Climatewas generally cooler and drier and
large ice sheets existed at high latitudes in both hemispheres. As a con-
sequence, sea level was lower, newly exposing land surfaces and the
distribution of terrestrial vegetation was drastically altered. In the fol-
lowing, we evaluate how each of these four main changes (climate, ice
sheet extent, sea-level and vegetation zonation) may have altered the
magnitude and isotopic composition of land-to-ocean Si fluxes. The
aim of this exercise is to define plausible ranges that land-to-ocean Si
fluxes may have varied within. These ranges can then be used to create
scenarios of change in global land-to-ocean Si fluxes that act as inputs to
a simple model to evaluate the timescales and magnitudes of whole-
ocean δ30Si response to a variable continental Si cycle.

5.1. Impact of glacial climate on land-to-ocean Si fluxes

5.1.1. Impact of glacial climate on the river DSi flux and δ30Si
The river DSi flux is the single largest input to the ocean, but infer-

ring potential variability on glacial–interglacial (G–IG) timescales is dif-
ficult, partly because the parameters controlling DSi fluxes are not well
understood and are probably compensatory to some degree (Kump and
Alley, 1994). The flux, and its associated δ30Si, can vary in two ways:

1. Via changes in the rate of DSi release from primary minerals (i.e. the
silicateweathering rate) and theweathering style, including changes
associated with the exposure of continental shelf during sea-level
lowstands and subglacial weathering.

2. Via changes in continental Si cycling, particularly the presence and
efficiency of continental Si sinks (Billen et al., 1991; Meybeck and
Vörösmarty, 2005).

What controls DSi mobilisation from bedrock? First-order controls
on silicate-weathering rates include temperature, water availability
and lithology, plus the tectonic parameters that affect the exposure of
new material (West et al., 2005). These parameters control e.g. the de-
gree of soil development, physical erosion rates, catchment hydrology
and ecosystem structure whichmay bemore direct determinants of sil-
icate weathering rates. In practise, this makes it hard to predict how
silicate-weathering rates may have varied over G–IG cycles. As Kump
and Alley (1994) note, intuition is of little help because of the multiple
interacting and counteracting controls.

We consider that the river DSi flux has been relatively invariant
(±20%) since the LGM. This premise is based on modelling of river
DSi fluxes using lithology-specific runoff–Si flux relationships (Jones
et al., 2002; Gibbs and Kump, 1994; Munhoven, 2002). This work has
demonstrated that a decrease in Si fluxes resulting from e.g. lower con-
tinental precipitation was largely balanced by increased fluxes from
newly-exposed continental shelf. It is also consistent with interpreta-
tions of G–IG records of Pb stable isotopes in oceanic ferromanganese
crusts (Foster and Vance, 2006), high-precision radiogenic 87Sr/86Sr ra-
tios in foraminifera (Mokadem et al., 2015) and cosmogenic 10Be/9Be
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ratios in ocean authigenic sediments and ferromanganese crusts (von
Blanckenburg et al., 2015). These independent lines of evidence all sug-
gest that the continental weathering fluxes have not substantially var-
ied over the late Quaternary glacial–interglacial cycles; we make the
simplifying assumption that the same is true for DSi fluxes.

However, the δ30Si of the river DSifluxmight bemore variable. River
DSi δ30Si primarily reflects weathering congruency (Section 3, Fig. 6), so
if this could be inferred or reconstructed it can constrain themagnitude
of any change in river δ30Si. Qualitatively, we suggest that the river DSi
at the LGM likely had a lower associated δ30Si. Dosseto et al. (2015)
present an increase in lithium isotope ratios of 7‰ in clays in Himalayan
fluvial terraces since the LGM, attributed to a corresponding decrease in
weathering congruency. This is relevant because mass-balance dictates
that the residual solutes should follow a similar trend (cf. Fig. 2), and the
Si and Li isotope systems are thought to behave similarly (Opfergelt
et al., 2013; Pogge von Strandmann et al., 2012), so glacial river DSi
should also have lower δ30Si. Note that no similar studies exist for silicon
isotopes: there is clear potential for the δ30Si of secondary minerals in
e.g. fluvial terraces, floodplain deposits or deltaic sediments to provide
useful insight into palaeo-weathering dynamics. Mechanistically,
lower glacial river δ30Si may result from (i) reduced catchment fluid
and/or sediment residence times, (ii) lower temperatures acting to
lower rates of secondary mineral formation via a reduction in the rate
constants of precipitation or (iii) the greater relative formation of 2:1
clays over 1:1 clays, which tends to be associatedwith a smaller magni-
tude of fractionation (Opfergelt et al., 2012). Altogether, these can act to
reduce the total magnitude of clay formation (increase weathering con-
gruency), and therefore reduce the expression of Si isotope fraction-
ation during glacials. We suggest a conservative reduction of 0.2 ±
0.25‰ of river DSi at the LGM relative to today.

5.1.2. Impact of glacial climate on the dust flux and δ30Si
Marine and terrestrial sediments and ice-cores from both poles con-

sistently show increased dust accumulation rates over the LGM (Muhs,
2013). Glacial dust fluxes have received attention for their potentially
important role as a source of nutrients (particularly Fe or Si) to regions
of the oceans where (siliceous) primary production is currently limited
by lack of these nutrients (Harrison, 2000; Jickells et al., 2005; Martin,
1990). Due to expanded dust production areas, greater entrainment ca-
pabilities (drier soils and higher winds) and greater transport capacity
due to less efficient washout (Muhs, 2013; Tegen and Kohfeld, 2006),
total dust input to the glacial oceanwas 2–10 times higher thanmodern
deposition rates.We assume that even if loci of dust production are var-
iable, the solubility and mean isotopic composition (i.e. −0.67 ± 0.45;
Table 1) of the dust as estimated above are invariant.

5.1.3. Impact of glacial climate on the river sediment flux and δ30Si
The boundary conditions that control river sediment export (e.g.

temperature, precipitation, glacial activity and basin area) change over
glacial cycles. Using U-series disequilibria, Dosseto et al. (2010) argue
that sediment storage times in the Murrumbidgee River catchment,
Australia, reached a minimum at the LGM due to the lack of stabilising
influence from vegetation. Some larger rivers have sediment deliveries
buffered by their alluvial plains on timescales as long as Quaternary gla-
cial cycles (Métivier and Gaudemer, 1999), although this does not apply
to all large rivers (Clift and Giosan, 2014). Even small mountain catch-
ments can buffer sediment delivery on millennial timescales (Blöthe
and Korup, 2013), introducing inertia into river system sediment fluxes.
Glaciers and ice-sheets produce large amounts of finely ground glacial
flour, but the extent to which this contributes to enhanced sediment
fluxes rather than providing for a potential post-glacial pulse (Vance
et al., 2009) is unclear. Modelling studies in both the Po River basin,
northern Italy (Kettner and Syvitski, 2009), and the Waipaoa River,
New Zealand (Upton et al., 2013), driven by temperature, precipitation,
catchment size and an index of erodability suggest enhanced LGM
fluxes relative to modern (preindustrial) fluxes. Overall, we consider
that the net sediment load carried by rivers at the LGM was between
1 and 2× modern (preindustrial) values. We make the simplifying as-
sumption that the percentage of this sediment liable to dissolve was a
constant fraction, and we assume no post-glacial sediment pulses or
lags, and that it had a constant δ30Si.

5.2. Impact of continental ice-sheets on land-to-ocean Si fluxes

Subglacial and periglacial silicate weathering is different in style to
subaerial weathering. Analysis of subglacial streams shows that silicate
weathering tends to bemore congruent, as evidenced byhighGe/Si (ap-
proaching the Ge/Si ratio of bedrock) and elemental stoichiometries
(Tranter, 2005), and tends to be driven by acidity not sourced from at-
mospheric carbon (Anderson, 2005; Wadham et al., 2010). The few in-
vestigations of DSi δ30Si in glaciated catchments (Georg et al., 2007a;
Opfergelt et al., 2013) show that these tend to be low δ30Si rivers that
approach the parent material isotopic composition. Therefore, a world
with increased sub- or peri-glacial solute generation could perhaps be
expected to introduce low δ30Si DSi. Opfergelt et al. (2013) found a dif-
ference in δ30Si of 0.8‰ between glaciated and non-glaciated catch-
ments in Iceland and estimated a net decrease in river δ30Si of 0.12‰
due to the presence of the high-latitude ice sheets, mountain ice-caps
and valley glaciers, which we retain here.

5.3. Impact of lowered sea-level on land-to-ocean Si fluxes

At the LGM, global eustatic sea levels were approximately 130 m
lower as a result of water storage in the polar ice caps (Lambeck et al.,
2014). This may affect the inputs to the global ocean and ocean Si cy-
cling in at least three ways: i) a reduction in the ‘fluvial filtering’ of
land to ocean fluxes, ii) the exposure of new land surface to subaerial
weathering and remobilisation of ‘old’ BSi, with an associated reduction
in the area of continental shelf available for neritic BSi sedimentation,
and iii) alteration to groundwater flow dynamics.

5.3.1. DSi and the fluvial filter: alluvial plains, estuaries and lakes
The land-to-ocean DSi flux must pass through a series of

biogeochemically reactive systems – wetlands, lakes, estuaries, etc. –
that act as a ‘fluvial-filter’ (Billen et al., 1991; Meybeck and
Vörösmarty, 2005). The base level of a river system is the lowest level
to which it can be subaerially eroded, usually sea level. In response to
a sea-level change and therefore a channel shortening or lengthening,
a river network can aggrade or incise to adjust towards a new equilibri-
um profile, although the nature of the adjustment depends on shelf and
channel gradients, sediment supply, streampower, etc. A full discussion
of fluvial responses to base-level change is beyond the scope of this
paper (reviews can be found in Blum and Törnqvist, 2000 and
Schumm, 1993). However, we speculate that water/sediment interac-
tion times in alluvial plains were lower at the LGM because of the
lowered base-level, a suggestion advanced previously (Lupker et al.,
2013).

In the Ganges basin today, rivers partially or completely draining the
alluvial plain have DSi δ30Si (typically N2‰) consistently and substan-
tially higher than rivers draining solely the Himalaya (around 1‰)
(Fontorbe et al., 2013; Frings et al., 2015). The silicon isotope composi-
tion (1.69‰) at the most downstream point reflects a conservative
mixing of the upstream tributaries, meaning the presence of alluvial
plain derived DSi pushes the δ30Si of exported DSi higher by around
0.7‰ in the Ganges. As suggested above, δ30Si from alluvial plain
streams are high because sediment/water interaction times are suffi-
ciently long to promote clay formation. If the interaction time between
sediment and water is reduced, then we can speculate that secondary
mineral formation will be reduced, with a correspondingly lower
exported δ30Si. We speculate that this could cause the mean river DSi
δ30Si to decrease by up to 0.2‰.



Table 2
Summary of plausible changes to the magnitude and/or Si isotopic composition of dis-
solved Si inputs to the ocean, for the LGM relative to today.

Altered
flux

Mechanism for alteration Change in
associated
DSi flux

Change in
associated
δ30Si (‰)

River DSi Altered weathering regimes ±20% −0.45 to +0.05
Subglacial weathering −0.15 to 0
Lesser lake Si retention −0.10 to 0
Less alluvial plain interaction −0.10 to 0.1
Remobilisation of continental
shelf BSi deposits

−0.10 to 0

Reduced estuarine filter 0–10%a −0.10 to 0a

Net: −20 to
+30%

−1.00 to +0.05

Dust Greater dust generation; less efficient
continental rainout

2–10× Constant

River SPM Increased glacial flour production, less
vegetation stabilisation

1–2× Constant

SGD Greater groundwater flow due to
greater hydraulic head

1–2× Constant

a Assumed to co-vary.
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Lakes also act as biogeochemical reactors, converting some fraction
of inflowing DSi into BSi and burying it in their sediments (Frings
et al., 2014a; Harrison et al., 2012). This retention must shift δ30Si of
the residual DSi higher (Frings et al., 2014a; Hughes et al., 2012). Two
global estimates of the magnitude of DSi retention in lakes arrived at
similar values of ~25% of the river DSi flux (Frings et al., 2014a;
Harrison et al., 2012), meaning that δ30Si of river DSi is about 0.2‰
higher than in a hypothetical lake-free world, assuming a BSi produc-
tion fractionation of −1.1‰ (Fig. 2). Many lakes today are glacial relics
(Hutchinson, 1957), formed by glacial scouring or in dead-ice pits. This
implies that during glacial periods there were fewer lakes and less DSi
retention, so therefore less fractionation, perhaps compounded by de-
creased productivity (and therefore less efficient retention) in cooler
climates. Overall, a reduced lake sink may constitute a further lowering
of fluvial δ30Si by ca. 0.1‰ in glacial periods.

Estuaries provide a final example of how a less efficient fluvial filter
may have altered river Si fluxes on millennial timescales. Estuaries are
of interest since they are features of periods of transgressive sea level
(Weiss et al., 2015; Kennett, 1982). If these environments are acting as ef-
ficient particle or solute filters today (Section 4.1.3), we can expect them
to behave differently (i.e. a much reduced filtering capacity) during the
LGM sea level lowstand when river discharge into the ocean was mostly
direct (Kennett, 1982). Taking the estimated isotopic impact of estuarine
DSi retention (~0.1‰; Section 4.1.4), a near cessation of estuarine Si fil-
tering associated with more direct riverine discharge to the ocean could
conceivably lower the net δ30Si of river DSi entering the open ocean by
~0.1‰— assuming a BSi production fractionation of−1.1‰ (Fig. 2).

5.3.2. Exposure of continental shelf
BSi accumulation rates on continental shelves are high

(~1.8 × 1012 mol yr−1) because of high production rates (due to prox-
imity to continental nutrients) and higher preservation efficiencies
(due to shorter water column residence time and higher sedimentation
rates) (DeMaster, 2002). This means that there are massive pools of BSi
that could potentially become available to subaerial weathering during
sea level lowstands. The δ30Si of this is unknown; we speculate it could
alter the mean δ30Si of river DSi by ±0.1‰.

5.3.3. Potential modification of submarine groundwater discharge at the
LGM

A lowering of base level both allows for greater freshwater storage in
continental aquifers (Adkins et al., 2002) and increases the hydraulic
gradient, which may be expected to increase the glacial submarine
groundwater discharge (SGD) flux relative to today. To our knowledge,
this has never been quantified. Global precipitation was lower at the
LGM, but rates of evaporation also declined, meaning discharge
remained relatively constant (Kump and Alley, 1994; Jones et al.,
2002). However, it is possible that the partitioning of this discharge be-
tween SGD and rivers changed. We incorporate this into our scenarios
whereby a glacial SGD increase of between 1 and 2× modern values is
counterbalanced by a decrease in river runoff of the same magnitude;
the δ30Si of SGD is held constant.

5.4. Impact of altered vegetation zonation on land-to-ocean Si fluxes

At the LGM, there was a general equatorward contraction in the zo-
nation of vegetation communities towards lower altitudes and lati-
tudes, and an expansion of grasslands at both low and high latitudes
(Harrison and Prentice, 2003). Given that distinctive Si cycles exist in
these biomes, could this play a role? It is unclear to what extent there
are systematic differences in silicate weathering rates beneath various
biomes. In the absence of clear evidence, we assume that the latitudinal
contraction and expansion of vegetation ranges characteristic of the
Quaternary glacial cycles was not associated with a net change in the
rate of the solubilisation of Si from bedrock at a global scale beyond
that included in our ±20% DSi flux range (Section 5.1.1).
Vegetation pattern changes might alter the DSi exported from catch-
ments via a change in Si cycling at an ecosystem level (Conley and Carey,
2015). The ratio of export of fractionatedmaterial to initial solubilisation
from bedrock is a key control on the silicon isotope composition of river
water (Section 3; Bouchez et al., 2013). Therefore if a larger fraction of
the total Si exported is detrital biogenic opal or other secondary (alumi-
no)silicates then the degree of fractionation relative to bedrock of the re-
sidual DSi should be more pronounced. Vegetation and its associated
fungal and bacterial communities are key players in soil/clay formation;
it is likely that some biomes are more efficient at producing secondary
solids than others, but we are currently unable to evaluate this. Related,
some ecosystems may export more Si as biogenic Si. Two lines of evi-
dence suggest that this is not an important mechanism of change over
G–IG cycles. Firstly, the biogenic component is generally a small fraction
of the total of secondary Si phases produced and exported, which tend to
be dominated by clay minerals (Section 3). Secondly, an assumption in-
herent in the preceding discussion (Section 5.2) is that the majority of
BSi carried by rivers dissolves upon entry to seawater, such that it can
have minimal net effect on the δ30Si of Si delivered to the ocean.

A final mechanism whereby vegetation zonation may alter land-to-
ocean Si fluxes is through transient changes in the size of the ecosystem
Si pool. Although our understanding of terrestrial Si cycling is still in its
infancy (Conley, 2002; Struyf and Conley, 2012), some aspects are rea-
sonably well established. We know that terrestrial ecosystems develop
a pool of Si in the soil–plant system that is composed of biogenic silica
(BSi; mostly phytoliths) and its diagenetic products together with
amorphous Si phases formed purely pedogenically (Barão et al., 2015;
Sommer et al., 2006), and that this pool is isotopically distinct, being de-
pleted in the heavy 30Si (Cornelis et al., 2010, 2011; Vandevenne et al.,
2015).We know that just considering the upper portion of a soil profile,
this pool can be orders of magnitude larger than the annual Si export
from a system (Struyf et al., 2010a,b). It has recently been estimated
at 8250 × 1012 mol, i.e. ~1000 × annual DSi export (Laruelle et al.,
2009) and ~100 × annual BSi production by terrestrial vegetation
(Carey and Fulweiler, 2012). Finally, we know that the size of this pool
varies among different ecosystems (summarised in Alfredsson et al.,
2015), such that when land-cover changes the pool will aggrade or be
depleted to reach a new steady state commensurate with the rate of
input and the recycling efficiency (Clymans et al., 2011; Struyf et al.,
2010b). There is therefore the potential for a transient increase or de-
crease in river DSi fluxes and/or associated changes in δ30Si as the
pool aggrades or depletes. At local scales, the build-up or depletion of
this soil–plant ASi pool may be key in interpreting lacustrine δ30Si re-
cords (Street-Perrott et al., 2008; Swann et al., 2010). One key unknown
relates to the timescale of adjustment to a new steady-state. Although



Fig. 10. A visual depiction of potential changes in the magnitudes (A) and δ30Si (B) of DSi fluxes to the ocean between modern day (brown boxes) and LGM (blue boxes with dotted
outline). The figure emphasises that the most likely mechanism of alterating the glacial ocean Si cycle is via a change in the relative importance of the individual fluxes, rather than via
a change in their δ30Si.
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there is little evidence available, estimates of adjustment times span
decadal to centennial timescales (Conley et al., 2008; Clymans et al.,
2011; Struyf et al., 2010b), less than the multi-millennial perturba-
tions required to impact the whole-ocean Si cycle. This can also be
viewed in another, simpler way: the estimate of the size of the con-
tinental ASi pool (i.e. 8.25 × 1015 mol) is ‘only’ about 7% of the
ocean DSi inventory (112 × 1015 mol) — too small to impact ocean
δ30Si on long timescales.
5.5. Synthesis of potential changes

A summary of these mechanisms for change, together with esti-
mates of their impact on the Si flux magnitude and isotope composi-
tion, is presented in Table 2 and graphically in Fig. 10. Overall, this
review suggests that the total inputs of DSi to the ocean have de-
clined slightly from the LGM to today, and that the weighted δ30Si
of these inputs may have been up to 1‰ lower at the LGM, larger
than the changes envisaged by previous work (Opfergelt et al.,
2013; Georg et al., 2009a).
Fig. 11. Schematic of boxmodel used to test ocean response to perturbations to input fluxes, sho
(2005). DSi inputs are prescribed independently into both theupper euphotic box (riverine, aeo
is transferred between the boxes by biological production, settling and dissolution, and physic
6. Manifestation of continental variability in the ocean Si cycle

Simplemass-balance calculations suggest that changes of N0.50‰ in
river DSi δ30Si alone are necessary to approach the level of variability
observed in BSi (0.5 to 1‰). The synthesis above suggests changes of
this magnitude are plausible, especially when considered in tandem
with changing dust and groundwater fluxes and a reduced fluvial filter
efficiency. If our analysis (Table 2) is correct in suggesting that a net
change in the input weighted δ30Si of ≥0.5‰ is plausible, then how rap-
idly is this observed in the ocean sediment record? Two studies have
touched on this question before. One did not consider a time dependent
aspect (Opfergelt et al., 2013). The second (Georg et al., 2009a) used a
two-box model to resolve the time dependency and concluded that
while δ30Si of BSi did change, the magnitude and speed of this change
was insufficient to be of interest. However, they considered only a var-
iable SGD flux and held all other parameters constant.

Models of varying complexity have been used to investigate aspects
of the ocean Si cycle. The simplest models have a limited number of
boxes (De La Rocha and Bickle, 2005; Yool and Tyrrell, 2003, 2005;
Laruelle et al., 2009; Bernard et al., 2010; de Souza et al., 2012; Reynolds,
wing bothmass fluxes and associated fractionations,modified fromDe La Rocha and Bickle
lian, and groundwaterfluxes) and the deepoceanbox (hydrothermalfluid recirculation). Si
al mixing (upwelling and downwelling). See main text for more details.

Image of Fig. 10
Image of Fig. 11


Fig. 12. Comparison of model output (brown circles) for the present day (parameters as in Table 1 and Supplementary data) with observational data (black dots, means given as green
diamonds). DSi data averaged by depth from the global climatology of Gouretski and Koltermann (2004). Ocean δ30Si data from literature compilation from all ocean basins (CDLR,
unpublished compilation).

Fig. 13. Potential impact of changing land-to-ocean Sifluxes onmillennial timescales on ocean Si cycling, as simulated by a two-boxmodel. All results generated using 500 iterations (each
light grey line represents one iteration), each representing one ensemble of input parameters randomly selected from the range of plausible values in Tables 1 and 2. See main text for
details. A: Change in surface-water (upper 100 m) DSi concentrations in response to imposed input changes. B: Change in deep ocean (below 100 m) DSi concentrations in response
to imposed input changes. C: Isotopic response of surface ocean DSi. Each iteration is standardised to a LGM baseline derived from a 50,000 yr spin-up period, in order to show the
contrast between simulated glacial and modern oceans. Three representative downcore δ30Si profiles from the sub-Antarctic Indian Ocean (Beucher et al. (2007), the Southern Ocean
(Horn et al., 2011) and the North Atlantic (Hendry et al., 2014) are shown for comparison, also standardised to the δ30Si of the sample nearest 21 ka, with the published age-models
used as provided. D: Change in the sum of all input fluxes (×1012 mol yr−1), standardised to each iteration's LGM value. E: Change in the weighted mean δ30Si of all DSi inputs to the
ocean, standardised to each iteration's LGM value. F: Modelled Si residence time in the global ocean (total DSi inventory/annual DSi inputs).
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2009; Nelson et al., 1995; Sutton et al., 2010; Ridgwell et al., 2002).More
complex ocean general circulationmodels (GCMs) have also proved ex-
tremely insightful (e.g. Bernard et al., 2011; Wischmeyer et al., 2003),
but simple box models have the advantage that many ensembles of
input parameters can be tested to robustly assess model sensitivity
and identify magnitudes and timescales of change.

Here, we use a simple two-box model modified from De La Rocha
and Bickle (2005). The aim of this model is not to reproduce the exact
response of the ocean Si cycle to perturbations but rather to assess the
magnitude and timescales characteristic of ocean Si responses, and po-
tential visibility in sedimentary record of changes to input fluxes. The
model is modified slightly from that described in De La Rocha and
Bickle (2005) and shown in Fig. 11. This simple approach captures the
key features of the modern ocean Si cycle (Fig. 13), namely lower DSi,
higher δ30Si surface waters and higher DSi, lower δ30Si deep waters,
with a total DSi residence time (mass/inputs) of ~12 ka. Themainmod-
ifications from the original De La Rocha and Bickle (2005)model are the
incorporation of a DSi concentration dependency of BSi production and
dissolution. The model and its parameterisation are described more
fully in the Supplementary data. We use multiple model iterations
with different flux parameterisations to allow us to assess model sensi-
tivity and to account for our poor knowledge of modern DSi fluxes and
even poorer knowledge of the palaeo-fluxes. (See Fig. 10.)

Both themagnitude and the isotopic composition of the input fluxes
are varied over the course of a model run. For each iteration, values for
themodern input fluxes and δ30Si are randomly chosen fromwithin the
values and uncertainties given in Table 1. The LGM input values are then
defined as a function of their deviation from themodern values, selected
randomly fromwithin the estimates in Table 2. Themodel is then spun-
up to near equilibrium (50,000model years) with the LGM values, then
run from this baseline for a further 50,000 years, with all changes from
LGM values tomodern values conservatively assumed to occur progres-
sively over a 10 ka deglacial period, i.e. assuming a monotonic climate
transition. A series of sensitivity tests described in the Supplementary
data demonstrate that the results described below are robust to changes
in parameterisation.

6.1. Box model results

When the prescribed changes (Table 2, Fig. 10) are imposed on the
model-ocean, BSi production and dissolution adjust on the timescale
of ocean mixing (1000 years) to maintain steady-state and keep the
sedimentation of BSi equal to the total DSi inputs. Because of this,
from the LGM to themodern day, the residence time of DSi, BSi produc-
tion and dissolution fluxes, preservation efficiency and DSi concentra-
tions were all relatively invariant. Fig. 13a–b shows the change in
modelled DSi concentrations from each LGM iteration to a modern
day value. These small changes observed, despite relatively large chang-
es to the input fluxes, demonstrate a relative insensitivity of the marine
Si cycle to perturbations. Feedbacks between production and dissolu-
tion act to ensure that the total inventory of Si in the ocean is relatively
insensitive to input fluxes, a conclusion corroborated by previous work
(Ridgwell et al., 2002).

In contrast, the δ30Si of ocean DSi, and therefore the BSi produced
from it, exhibits relatively large changes and takes multiple Si residence
times (N40,000 years) to reach steady-state. The results presented in
Fig. 13c shows the modelled change in δ30Si of surface ocean DSi over
a 50,000 yr simulation, standardised to the baseline (“LGM”) value for
each iteration. Note that because δ30Si of BSi in the model is approxi-
mately a constant offset (i.e. −1.1‰) from the surface ocean DSi, and
because we prescribe no fractionation during dissolution (Wetzel
et al., 2014), the δ30Si of BSi buried in marine sediments produces iden-
tical results. Likewise, including a fractionation during dissolution only
affects the absolute δ30Si values of the buried BSi, not the relative trends
(see Supplementary data). The δ30Si of deep-oceanDSi is similarly offset
from the surface ocean DSi. In the 20,000 model years from LGM to
present, δ30Si of surface ocean DSi (or BSi) changes by between ~0.0
and 0.8‰, depending on the suite of input values chosen. This is a sim-
ilarmagnitude of total change, and at a similar rate, as measured in sed-
imentary BSi δ30Si (Figs. 5 and 13). The results suggest that diatom δ30Si
does not necessarily reflect simply palaeoutilisation of DSi or the other
factors invoked to explain downcore δ30Si changes, including water-
mass mixing or species-specific effects (Sutton et al., 2013). Instead, di-
atom δ30Si since the LGMpotentially represents both these factors and a
variable δ30Si of whole-ocean DSi.

Many of the parameter ensembles in Fig. 13 show little change,
while some exhibit change in δ30Si of up to 0.8‰. This differences are
primarily due to the difference in importance the randomised parame-
ter selection ascribes to the dust, SPM and SGD fluxes. Because the
LGM values are defined relative to the modern values, the scenarios
that call for values of dust, river sediment and groundwater fluxes to-
wards the higher end of their possible values (Table 1) are especially
sensitive to changes in their magnitude. Because these fluxes have dis-
tinctively low δ30Si relative to river DSi, this implies that they could be
key controls, and overlooked, controls on the ocean Si isotope budget,
particularly in the glacial ocean. Yet these fluxes, together with the
fluxes of DSi from seafloor alteration, remain understudied. Their mag-
nitudes and isotopic compositions are often based on tenuous assump-
tions or extrapolations (Section 4). This is a knowledge gap that would
be relatively simple to address, and could be a future research priority.

The intention of this exercise is to demonstrate the potential for
whole ocean shifts in δ30Si of DSi rapid enough to be relevant for inter-
pretation of downcore δ30Si-BSi over glacial–interglacial cycles. Many
processes cannot be incorporated. For example, the model clearly can-
not capture the complexities of ocean circulation and the spatial distri-
bution of marine DSi and δ30Si, which is also a contributory factor to
downcore δ30Si records (Hendry and Brzezinski, 2014). Future research
could focus on better constraining the magnitude of fluctuations in Si
fluxes and isotopic compositions, and on more mechanistic modelling
of the ocean Si cycle. Nevertheless, with a reasonable range of input pa-
rameters, our synthesis suggests that the continental Si cycle is directly
responsible for somewhere between 10 and 100% of the well-
established LGM-modern trend observed in marine δ30Si records
(Fig. 10). Importantly, the higher frequency (i.e. sub-millennial) vari-
ability, which is a feature of many records (e.g. Hendry et al., 2014;
Hendry et al., 2016; Horn et al., 2011) is not explainable by such a
whole-ocean mechanism and must instead reflect internal ocean circu-
lation or productivity dynamics.

6.2. Implications of whole-ocean changes in δ30Si of DSi

Any whole-ocean, long-term trend in DSi δ30Si driven by a variable
continental cycle should be detrended from BSi records before interpre-
tation of palaeo-nutrient utilisation. As an example of an application of
δ30Si of BSi to palaeoenvironmental questions that may require reinter-
pretation, we highlight the issue of explaining changes in G–IG atmo-
spheric CO2. An outstanding question in the geosciences is the cause
of the ca. 100 ppmv lower CO2 concentrations at the LGM relative to
the preindustrial world (Sigman and Boyle, 2000). As the largest carbon
reservoir at the Earth's surface, the oceanmust be involved in sequester-
ing atmospheric carbon in the deep ocean during glacial periods, al-
though a compelling explanation has thus far been elusive. One body
of work has focused on increased siliceous productivity as a contributo-
ry mechanism (e.g. Harrison, 2000; Brzezinski et al., 2002; Matsumoto
et al., 2002; see Hendry and Brzezinski, 2014 for a review). Testing
these hypotheses hinges on demonstrating whether, and where, sili-
ceous productivity increased at the LGM, and so downcore silicon iso-
tope records (Fig. 5) have been an important part of evaluating these
hypotheses. Accounting for the existence of a whole-ocean trend
would tend to lessen the difference in DSi utilisation recorded in diatom
δ30Si between the LGM and modern oceans. In general, this weakens
support for the family of hypotheses that invoke biosiliceous
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productivity shifts as a mechanism to alter atmospheric CO2, though it
should be noted that these hypotheses often require upwelling/circula-
tion changes not resolvable at a global scale (Hendry and Brzezinski,
2014).

Quantifying such a whole ocean trend should be a research priority,
and could be achieved via two approaches. First, viamore sophisticated
modelling approaches than that employed here, perhaps driven by re-
constructions of river DSi δ30Si inferred from river delta sedimentary re-
cords, improved dust deposition fields, etc. Second, via measurements
of δ30Si over a glacial–interglacial cycle from an archive/proxy sensitive
to whole-ocean δ30Si changes, but insensitive to changing DSi concen-
tration or utilisation. We suggest such an archive may be found in
deep-sea siliceous sponges between 30° and 60° N in the Pacific. Here,
DSi concentrations are among the highest observed in the global
ocean (~170 μM), owing to its location at the end of the thermohaline
‘conveyor belt.’ Water here is among the oldest in the global ocean,
and has had the longest time to accumulate regenerated Si from disso-
lution of BSi produced in surface waters (Sarmiento and Gruber,
2006). Because the relationship between siliceous sponge silicon iso-
tope fractionation and ambient DSi concentrations plateaus at high
DSi (Section 2.3), sponges consistently bathed in ≫100 μM DSi should
exhibit more-or-less constant fractionation, meaning any variability
must reflect instead changes in δ30Si of the ambient DSi.

7. Conclusions and future directions

The fluxes of Si from land to ocean provide the majority of Si for the
ocean Si cycle, and they are variable in terms of bothmagnitude and iso-
topic composition. While the ~12 ka residence time of DSi in the mod-
ern ocean buffers it against external forcing on short timescales,
persistent changes to the inputs over millennia could theoretically pro-
duce a whole-ocean δ30Si shift. Indeed, the consistency among different
ocean basins of changes in δ30Si from biogenic silica (BSi) over the last
few glacial cycles hints at such a shift. These records document some-
where between 0.5 and 1‰ variability between low glacial δ30Si and
higher interglacial δ30Si, which is classically interpreted in terms of
palaeoproductivity. Given that the majority of all Si in the ocean origi-
nally derives from the continents, at least some of this variation may
in fact reflect varying continental processes. A glacial continental Si
cycle likely differs from themodern one, andwe suggest thatmany pro-
cesses operating together can cumulatively lower the mean δ30Si of Si
entering the ocean by up to 1‰. These include alterations to the rate
and style of continental silicate weathering, less efficient continental
and estuarinefiltering of riverfluxes, and increased dust and groundwa-
ter fluxes. A simple box-model suggests that these changes, prescribed
gradually over the entire deglaciation, can produce a whole ocean
δ30Si increase of comparable rate, magnitude and timing to that record-
ed in sedimentary BSi. If correct, this implies thatwemay need to revisit
some interpretations of the glacial–ocean Si cycle. It also suggests that
the continental Si cycle should not be neglected when interpreting
pre-Quaternary long-term δ30SiBSi records from marine sediment re-
cords (Fontorbe et al., in review; Egan et al., 2013).

However, many aspects of themodern and the palaeo-Si cycles need
to be better constrained. We still have only a poor understanding of the
magnitude of most inputs of Si to the global ocean, and an even poorer
understanding of the controls on their isotopic composition. Only when
these are better understood will we be able to improve the estimates of
the direction and magnitude of change over the glacial–interglacial cy-
cles that characterise the late Quaternary. Future research could take a
three-pronged approach of measuring, modelling and reconstructing:

1. Measuring. What are the modern inputs of DSi to the ocean? In par-
ticular, DSi from dissolution of aeolian dust and river sediment (par-
ticularly non-basaltic terrains), DSi from alteration of the oceanic
crust (high and low temperature), and DSi from submarine ground-
water discharge, all need better constraining. The role of estuaries
and the coastal zone sensu lato, in scavenging river Si fluxes also
needs better quantification.

2. Modelling. Especially of the potential role for both transient and per-
sistent impacts of terrestrial vegetation on river Si fluxes, and more
sophisticated ocean response models.

3. Reconstructing. Interrogation of well chosen archives can provide
useful information. For example, detrital clays in sedimentary ar-
chives seem well placed to inform about continental weathering
rates and intensities, while sponge spicules from some sites in the
global ocean may document long-term whole-ocean δ30Si changes.
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